District heating distribution in areas with low heat demand density

Heimo Zinko, Ulrika Ottosson, ZW Energiteknik AB, Sweden
Benny Bøhm, Benny Bøhm Energiteknik, Denmark
Halldor Kristjansson, Danfoss DH, Denmark
Kari Sipilä, Miika Rämä, VTT, Energy and Pulp & Paper, Finland
Objective

to propose and to analyse measures for improving the economy of heat distribution in areas with low heat demand density.
The main problem

- Heat losses
- Costs

Relative Pipe Heat Losses

250 DH networks, influence from heat line-density

Heat line-density GJ/m, yr. (from DFF statistics 2001-2)

Critical area
Working approach

- Analysis of existing systems in order to define reference systems
- Analysis of new techniques with potential of lowering system costs
- Analysis of new district heating applications for more efficient use of existing structures
Reference systems

Example Neidonkallio:
31 buildings, 2500 m, 1.4 MWh/m, yr

Supply temperatures for pipe system with series 1 insulation

Days of February 2007
Cost analysis of alternative distribution techniques

Smaller size of anything reduces costs and heat losses

- Single pipe
- Twin
- Triple pipe
- Twin with Booster
- EPESPEX-system
- Substation with Ackum.
Reference systems

Example
Nykøbing, Falster, Dk
16 houses
574 m
0.56 MWh/m, yr
Cost comparison Nykøbing

- Annual installation cost with annuity
- Annual maintenance and losses cost

<table>
<thead>
<tr>
<th>System</th>
<th>Cost Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single (Old net)</td>
<td>€14,000</td>
</tr>
<tr>
<td>Single (new system)</td>
<td>€12,000</td>
</tr>
<tr>
<td>Single HWtank</td>
<td>€10,000</td>
</tr>
<tr>
<td>Twin (existing)</td>
<td>€8,000</td>
</tr>
<tr>
<td>Twin HWtank</td>
<td>€6,000</td>
</tr>
<tr>
<td>Twin HWHEX</td>
<td>€4,000</td>
</tr>
<tr>
<td>Booster</td>
<td>€2,000</td>
</tr>
<tr>
<td>Triple pipe</td>
<td>€0</td>
</tr>
<tr>
<td>EPS PEX</td>
<td>€0</td>
</tr>
</tbody>
</table>
Increased use of district heating instead of electricity - Demo Göteborg
Göteborg - house - comparison
Electrical energy vs. District heating

5550 kWh electricity replaced by 7500 kWh district heating
DH-systems in areas with low heat demand – Main conclusions

- Simpler design for lower costs → low pressure, low temperature recommended
- Smaller pipe dimensions such as to be achieved with twin-and triple pipes are important cost factors
- Degree of connection is an important factor → marketing
- House-to-house trassing should be applied if possible
- Examples of cost reduction: 25 resp 40 % in two reference cases
Conclusions continued

• New loads such as for washing and dishing equipment can improve the utilisation of the district heating net

• Use of primary energy can be reduced by 35 % with the new loads in the Göteborg demonstration