

International Energy Agency Technology Collaboration Programme on **District Heating and Cooling including Combined Heat and Power**

This project has been independently funded by the International Energy Agency Technology Collaboration Programme on District Heating and Cooling including Combined Heat and Power (IEA DHC).

Any views expressed in this publication are not necessarily those of IEA DHC. IEA DHC can take no responsibility for the use of the information within this publication, nor for any errors or omissions it may contain.

Information contained herein have been compiled or arrived from sources believed to be reliable. Nevertheless, the authors or their organizations do not accept liability for any loss or damage arising from the use thereof. Using the given information is strictly your own responsibility.

IEA DHC Operating Agent:

AGFW Projekt GmbH Stresemannallee 30 60596 Frankfurt am Main Germany Phone: +49 69 630 434 4 E-mail: iea-dhc@agfw.de

$^{\odot}$ Copyright IEA DHC c/o AGFW Projekt GmbH 2019, $^{\odot}$ R2M Solution 2019, $^{\odot}$ VTT 2019, $^{\odot}$ SCUT 2019

All property rights, including copyright, are vested in IEA DHC represented by the Operating Agent for the IEA DHC Executive Committee. In 2019 AGFW Projekt GmbH (Germany) fills out that role, on behalf of the Contracting Parties of the International Energy Agency Technology Collaboration Programme on District Heating and Cooling including Combined Heat and Power. In particular, all parts of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise only by crediting IEA DHC as the original source. Republishing of this report in another format is prohibited unless explicitly permitted by the IEA DHC Operating Agent in writing.

Citation:

Please refer to this report as:

Calderoni M, Babu Sreekumar B, Dourlens-Quaranta S, Lennard Z, Rämä M, Klobut K, Wang Z, Duan X, Zhang Y, Nilsson J, and Hargo L. Sustainable District Cooling Guidelines. IEA DHC/CHP Report, 2019.

Disclaimer Notice:

This publication has been compiled with reasonable skill and care. However, neither the authors nor the DHC Contracting Parties (of the International Energy Agency Technology Collaboration Programme on District Heating & Cooling) make any representation as to the adequacy or accuracy of the information contained herein, or as to its suitability for any particular application, and accept no responsibility or liability arising out of the use of this publication. The information contained herein does not supersede the requirements given in any national codes, regulations or standards, and should not be regarded as a substitute for the need to obtain specific professional advice for any particular application.

Acknowledgements

The enclosed report was co-authored by R2M Solution (<u>www.r2msolution.com</u>), VTT – Technical Research Centre of Finland (<u>www.vttresearch.com</u>), SCUT – South China University of Technology (<u>www.scut.edu.cn/en/</u>), and Devcco – District Energy Venture (<u>www.devcco.se</u>).

The responsible authors were Marco Calderoni, Bishnu Babu Sreekumar, Sophie Dourlens-Quaranta, Zia Lennard (R2M Solution); Miika Rämä, Krzysztof Klobut (VTT); Zao Wang, Xiaojian Duan, Yin Zhang (SCUT); Chapter 3 was provided by Joakim Nilsson, and Lars Hargo (Devcco).

Additional considerations, in support of the report: Ingo Wagner (EHP – EuroHeat & Power) for supporting the literature review; the INDIGO Project (www.indigo-project.eu, co-financed by the European Commission in the framework of Horizon2020 funding programme) for bringing together experts with a specific interest on district cooling; and Antonio Masoli (SIMM – società d'ingegneria Masoli Messi srl), for providing information about the neutral temperature District Heating and Cooling plant in Portopiccolo (Trieste, Italy).

Table of Contents

A	cknov	wledg	gements	4
A	obrev	/iatio	ns	11
1	Int	rodu	ction	15
2	De	efinitio	on and benefits of District Cooling	18
	2.1	Det	finition of district cooling	18
	2.2	Wh	ny district cooling	19
	2.2	2.1	Benefits of DC for the society	19
	2.2	2.2	Benefits of DC for propriety owners/customers	20
	2.2	2.3	Benefits of DC for energy services companies:	21
	2.3	Su	stainability assessment framework	21
3	Ge	enerio	c District Cooling Development Practice	25
	3.1	Intr	oduction	25
	3.2	Dev	velopment Process	25
	3.3	Bus	siness Case Roadmap	27
	3.3	3.1	System architecture and technology options	27
	3.3	3.2	Initial market assessment	27
	3.3	3.3	Stakeholder identification	27
	3.3	3.4	Risks and permits identification	28
	3.3	3.5	Identification of business models/ownership models	28
	3.3	3.6	Rough order magnitude financial key-figures	29
	3.3	3.7	Organization format	29

3.	4 Fea	asibility Study	. 30
	3.4.1	Development of system architecture	. 30
	3.4.2	Sourcing and Energy balance	. 31
	3.4.3	Phasing strategy	. 32
	3.4.4	Distribution and ETS	. 32
	3.4.5	Market demand development scheme	. 33
	3.4.6	District cooling competitiveness versus business as usual	. 33
	3.4.7	Technical and economic feasibility	. 34
	3.4.8	Environmental impacts and permitting	. 34
	3.4.9	Stakeholder analysis	35
	3.4.10	Risk management and generic risks	35
	3.4.11	Organization format	. 36
	3.4.12	Business Models	. 37
3.	5 Pro	ject Development	. 38
	3.5.1	General	. 38
	3.5.2	Contracting alternatives	. 38
	3.5.3	Engineering	. 39
	3.5.4	Procurement/contracting	. 39
	3.5.5	Permitting	. 39
	3.5.6	Financing	.40
	3.5.7	Developing customer concept and contracts	.40
	3.5.8	Marketing and sales	.40

	3.	6	Cor	nstruction	40
		3.6.	1	General	40
		3.6.	2	Key activities	41
		3.6.	3	Success factors	41
	3.	7	Ope	eration	41
		3.7.	1	Continuous activities	41
		3.7.	2	Customer support and energy efficiency programs	42
4		Mul	ti-er	ergy sources for District Cooling systems	43
	4.	1	Cor	npression chillers	44
	4.	2	Abs	sorption and adsorption chillers	46
		4.2.	1	Absorption chillers	47
		4.2.	2	Adsorption chillers	48
	4.	4.2. 3	2 Fre	Adsorption chillers	48 49
	4. 4.	4.2. 3 4	2 Fre Inte	Adsorption chillers e cooling gration with heat and electricity production	48 49 50
	4. 4.	4.2. 3 4 4.4.	2 Fre Inte	Adsorption chillers e cooling gration with heat and electricity production Trigeneration	48 49 50 50
	4. 4.	4.2. 3 4 4.4. 4.4.	2 Fre Inte 1	Adsorption chillers e cooling gration with heat and electricity production Trigeneration Solar cooling	48 49 50 50 51
	4. 4.	4.2. 3 4 4.4. 4.4.	2 Fre Inte 1 2 3	Adsorption chillers e cooling gration with heat and electricity production Trigeneration Solar cooling Integration with renewable energy sources	48 49 50 50 51 52
	4. 4.	4.2. 3 4 4.4. 4.4. 5	2 Fre Inte 1 2 3 The	Adsorption chillers e cooling gration with heat and electricity production Trigeneration Solar cooling Integration with renewable energy sources ermal energy storage	48 49 50 50 51 52 53
	4. 4. 4.	4.2. 3 4 4.4. 4.4. 5 6	2 Fre Inte 1 2 3 The Fut	Adsorption chillers e cooling gration with heat and electricity production Trigeneration Solar cooling Integration with renewable energy sources ermal energy storage ure cooling technologies	48 49 50 51 52 53 54
5	4. 4. 4.	4.2. 3 4 4.4. 4.4. 5 6 Bes	2 Fre Inte 1 2 3 The Fut	Adsorption chillerse cooling gration with heat and electricity production Trigeneration Solar cooling Integration with renewable energy sources ermal energy storage ure cooling technologies	48 49 50 51 52 53 54 56
5	4. 4. 4.	4.2. 3 4 4.4. 4.4. 5 6 Bes 1	2 Fre Inte 1 2 3 The Fut st pra	Adsorption chillers e cooling gration with heat and electricity production Trigeneration Solar cooling Integration with renewable energy sources ermal energy storage ure cooling technologies actices of District Cooling systems e cooling (Seawater/river cooling)	48 49 50 51 52 53 54 56 56

	5.1	.2	Copenhagen Opera	58
	5.2	Tri-	-generation	59
	5.3	Dis	trict Cooling system with large-scale thermal storage	62
	5.3	.1	Cairns campus	62
	5.3	.2	Helsinki	63
	5.4	Dis	trict Cooling system with wastewater energy	66
	5.4	.1	Overview of Longhu Financial Centre DHC project	66
	5.4	.2	Major technical parameters	67
	5.4	.3	Environmental impacts and benefits	69
	5.4	.4	Evaluation of the overall experience	70
	5.5	Со	mbined District Heating and Cooling systems	71
6	De	sign	of District Cooling systems	74
	6.1	Ass	sessing feasibility of a DC system	74
	6.1	.1	Necessity	74
	6.1	.2	Feasibility study	74
	6.2	Bui	ilding-level requirements for DC integration	78
	6.3	Din	nensioning a DC system	80
	6.3	.1	Cooling production	80
	6.3	.2	Thermal Energy storage	82
	6.3	.3	External connections and energy supply	84
	6.3	.4	Distribution network	86
	6.3	.5	Recommendations for ETS and cooling distribution at building level	88

	6.4	Choice of refrigerants		
	6.5	Mai	intenance-related issues	. 92
	6.5	.1	Hardware components	. 92
	6.5	.2	Water treatment	. 93
7	Co	ntrol,	, operation and maintenance of District Cooling systems	. 97
	7.1	Cor	ntrol and monitoring instruments	. 97
	7.2	Cor	ntrol strategies of DC systems	. 98
	7.2	.1	Basic control strategies	. 98
	7.2	.2	Advanced control strategies	100
	7.2	.3	Energy flexibility	102
	7.3 energ	Mea gy eff	asuring, Reporting and Verifying framework of District Cooling system	103
	7.4 electi	Met ricity	tering of generated and delivered cold energy, metering of consumed	104
8	Qu	ick n	nethodology for estimating the cooling demand of a given district	106
	8.1	Intr	oduction	106
	8.2	Firs	at approach based on electricity bills	107
	8.3	Sec	cond approach based on Cooling Degree Days	109
	8.4	Cor	nclusion	112
9	Inn	ovati	ive concepts for District Cooling	113
	9.1	Neu	utral temperature District Heating and Cooling systems	113
	9.2 neart	Dis by	trict Cooling sub systems coupled with sustainable District Heating system	ms 115

9.3	Dis	strict Cooling and District Heating combined systems	118	
9.3	3.1	DHC system in Helsinki	118	
9.4	Inr	novative thermal storage technologies	119	
9.5	De	emand response and flexibility services	120	
9.5	5.1	How to implement Demand Response Strategies	121	
9.6	Di	strict Cooling in 4GDH context	122	
10 I	Busi	ness models for District Cooling projects	124	
10.1	-	The District Heating and Cooling market	124	
10.2	(Ownership of DHC service providers	125	
10.3	(Contracting between customers and service providers	126	
10.4	(Ownership of ETS	128	
10.5	I	Incentives framework	128	
11 -	The	role of public authorities in the District Cooling sector	130	
11.1	-	The strategic value of District Cooling	130	
11.2	I	District Cooling and Urban Planning	133	
Appen	dix 1	1 Flowchart	135	
Appen	dix 2	2 Project development checklist	136	
Appen	dix 3	3 Standardization and regulatory requirements in Europe and worldwide	138	
Appen	dix 4	4 Temperature increase and heat losses with respect to pipe diameters	145	
List of	Figu	ıres	148	
List of	List of Tables			
Bibliog	Iraph	יאר	152	

Abbreviations

4GDH	Fourth Generation District Heating
BAU	Business as usual
вот	Build Operate Transfer
CAPEX	Capital expenditures
ССНР	Combined Cooling, Heating and Power
CDD	Cooling Degree Days
CEN/TC	European Committee for Standardization/Technical Committee
CFD	Computation Fluid Dynamic
CHP	Combined Heat and Power
COP	Coefficient of Performance
CSA	Customer supply agreements
DC	District Cooling
DH	District Heating
DHC	District Heating and Cooling
DR	Demand Response
DSM	Demand Side Management
DSO	Distribution System Operator
EC	European Commission
EIA	Environmental Impact Assessment
EPC	Engineer Procure Construct

ETS	Energy transfer station
EU	European Union
FTZ	Free Trade Zone Trigeneration
GCC	Gulf cooperation council
GD&T	Geometric Dimensioning and Tolerancing
GHG	Greenhouse gases
GWP	Global Warming Potential
HC	Hydrocarbon
HCFC	Hydrochlorofluorocarbon
HFC	Hydrofluorocarbon
HFO	Hydrofluoroolefins
HSE	Health, safety and environment
HVAC	Heating Ventilation and Air Conditioning
IEA	International Energy Agency
IT	Information Technology
LCA	Life Cycle Analysis
LCI	Life Cycle Inventory
LCIA	Life Cycle Impact assessment
LNG	Liquified Natural Gas
MID	Measuring Instruments Design
OPEX	Operational expenditures
PCM	Phase change material

PED	Pressure equipment design
PFC	Perfluorocarbons
PPP	Public-Private Partnerships
PRC	People's Republic of China
PV	Photovoltaic
RES	Renewable Energy Sources
RMB	Renminbi (Chinese yuan)
ROM	Rough order of magnitude
SCADA	Supervisory control and data acquisition systems
SWAC	Sea water air conditioning
TPA	Third Party Access
TSO	Transmission System Operator
UNDP	United Nations Development Programme
VRF	Variable refrigerant flow
VRV	Variable refrigerant volume

Unit of measurement

dBA	Decibel Scale A
EJ	Exajoule
GW	Giga Watt
GWh	Giga Watt hour
J	Joule
kg	kilogram
kPa	Kilo Pascal
kWh	Kilo Watt hour
MW	Mega Watt
MWh	Mega Watt hour
Pa/m	Pascal per metre
RT	Refrigeration Tons
TWh	Terra Watt hour
Wh/m	Watt hour per metre

1 Introduction

'District Cooling has its roots in the early 1800s when plans were made to distribute clean, cold air to buildings through underground pipes. It is not known if these plans were actually carried out, and District Cooling was not introduced on a practical level until the Colorado Automatic Refrigerator Company was established in Denver in 1889. Many of the earlier systems used ammonia and saltwater to freeze meat and cool buildings used by the public such as restaurants, theatres etc. In the 1930s large cooling systems were built in the Rockefeller Centre in New York City and the United States Capitol buildings' [1].

A brief history of 'modern' District Cooling can be summarized using the following milestones:

1960s: first commercial District Cooling systems were installed in the USA in non-residential areas near cities.

1967: first district cooling system in Europe. Climadef began supplying District Heating and Cooling to the La Défense office complex in Paris.

1989: first District Cooling system in Scandinavia (Baerum, Oslo).

1992: Västerås Energi & Production initiated the production of District Cooling in Sweden.

1995: District Cooling was successfully established in Stockholm. In 2015, District Cooling in Sweden had an energy output of around 900 GWh [2].

Largest District Cooling systems today are operating in Asia (Singapore, Tokyo, Dubai, UAE, Qatar, Saudi Arabia), Central and Northern Europe (Stockholm, Paris, Helsinki, Vienna, Berlin, Copenhagen, Amsterdam and Barcelona) and North America (Chicago, Toronto). No information about the total number of District Cooling systems operating worldwide is available, while in Europe around 150 systems are in operation. Cold energy delivered by District Cooling systems can be estimated to some 83 TWh per year [3].

District Cooling is based on centralized production of cold water which is distributed to customers in a closed loop underground pipe network. Production can be based on various sources and technologies. Common renewable cold sources are seas, lakes,

rivers and ground water. Where excess cold is available from industrial processes, it can be used directly in the District Cooling systems. Where excess heat is available, absorption chillers can be used to produce cooling. Storage of cold water or ice can help increase energy efficiency and lower operation and maintenance cost. At the customer end of the system, the cooling is transferred to buildings in energy transfer substations.

Figure 1: general scheme of a District Cooling system [4]

District Cooling systems can exploit renewable energy sources and excess energy from anthropic processes, significantly contributing to decarbonization of the heating and cooling sector. Furthermore, as they usually make use of thermal energy storage in order to meet peak cooling demand during warm summer days, they will in the future offer increasingly valuable flexibility to the electricity grid, which makes them economically appealing and attractive from the perspective of national and regional energy planning. Given the current energetic framework, which calls for greenhouse gas emission reduction [5] and for innovative approaches to face the issue of intermittent renewable energy sources, District Cooling is therefore increasingly raising interest among policy makers and municipalities.

Attention in this report is put on cooling sources and on cooling production technologies, with the intent of guiding readers through the many available options for implementing or expanding sustainable District Cooling systems that can meet sustainability requirements set at national, European and international levels.

The current guideline report first explains what District Cooling is, and why it can be beneficial for society and investors Chapter 2. Chapter 3 provides an overview of District Cooling development, followed by a detailed description of energy sources and cold generation technologies Chapter 4 and by a comprehensive list of best practices as case studies Chapter 5. Chapter 6 extensively considers design aspects of a DC system, from feasibility evaluation to maintenance. Chapter 7 is about basic and advanced control logics and concludes the technical section. Chapter 8 provides a methodology for estimating the cooling demand of a district, which is the first action to be undertaken by project developers in order to assess whether District Cooling can be economically feasible. Chapter 9 shows a list of innovative District Energy concepts, whereas Chapter 10 is an overview of potential business models for District Cooling systems. Finally, Chapter 11 explains the role of public authorities in the development of District Cooling projects.

Further information is reported in the Appendixes:

- Appendix 1 shows a flowchart of the implementation process of District Cooling projects;
- Appendix 2 provides a checklist for designers and project developers;
- Appendix 3 lists relevant standards at European, American, Chinese and international levels;
- Appendix 4 provides information about heat losses in District Cooling piping.

This document is only a part of the results of the respective IEA DHC research project.

For full results please register and login for free on:

www.iea-dhc.org