Actual Energy Efficiency of Building Scale Cooling Systems

Robert Thornton, International District Energy Association Robert Miller, FVB Energy Inc. Anis Robinson, BRE Environment Ken Gillespie, Pacific Gas & Electric

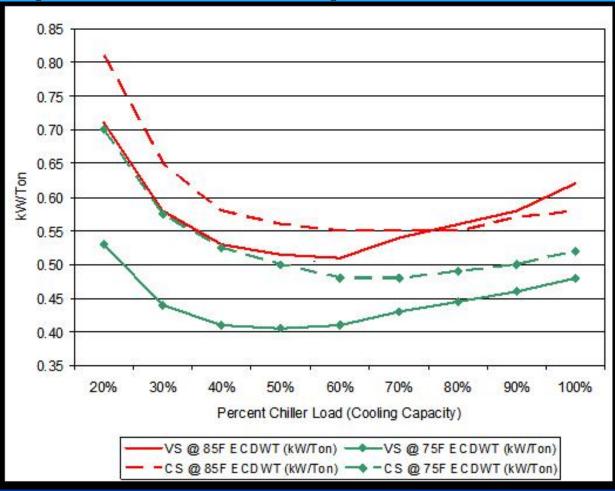
Introduction

- Assumed efficiency of buildingscale chillers affects marketing success of district cooling
- Often use theoretical values or equipment ratings based on static laboratory conditions
- "Real world" affected by:
 - Part load operations
 - Weather variations
 - Operating practices
 - Equipment aging

- Many variables affect actual chiller system efficiency:
 - Type of chiller equipment
 - Size of chillers and cooling towers relative to seasonal loads
 - Condenser temperature
 - Chilled water supply temperature
 - Use of variable frequency drives (VFDs)
 - Age and maintenance history of equipment

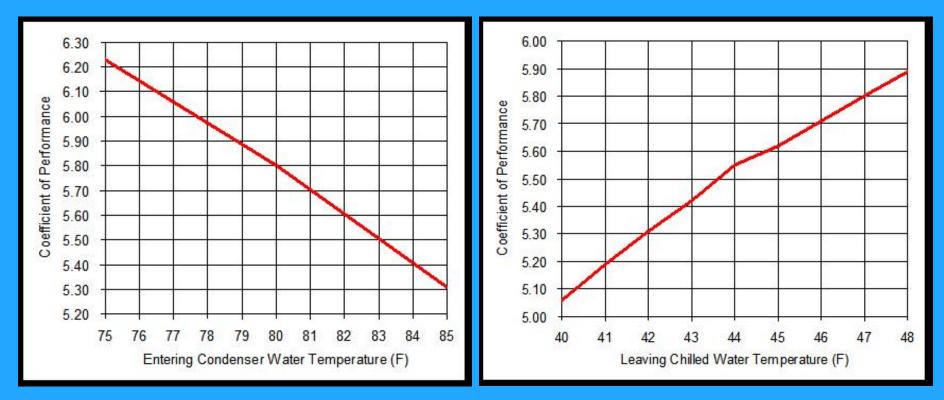
General methods for assessing efficiency

- Modelling, typically using detailed building and system simulation
- Indirect measurement
 - Monitor changes in total building electricity consumption after a building is connected to district cooling
 - Compare the reduction to the measured chilled water consumption following connection)
- Direct measurement (submetering) of chiller system components and chilled water production


Efficiency measures

- Coefficient of Performance (COP)
 - Ratio of heat removal to the rate of energy input
 - kW cooling output / kW power input
- kW/ton
 - One ton of cooling = removal of 3.516 kW (12,000 Btu per hour) of heat
 - kW electricity / ton of cooling

Part-load efficiency of constant-speed and variable-speed chiller compressors at fixed ECWT



© 2008 IEA-DHC

Impact on COP of varying ECWT and LCWT

ECWT – Entering Condenser Water Temperature LCWT – Leaving Chilled Water Temperature

Generalized efficiencies Southern California USA conditions

	kW/ton		
	Low	High	Average
New all-variable-speed chiller plants	0.45	0.65	0.55
High-efficiency optimized chiller plants	0.65	0.75	0.70
Conventional code-based chiller plants	0.75	0.90	0.83
Older chiller plants	0.90	1.00	0.95
Chiller plants with design or operational problems	1.00	1.30	1.15

Annual chiller efficiency measures

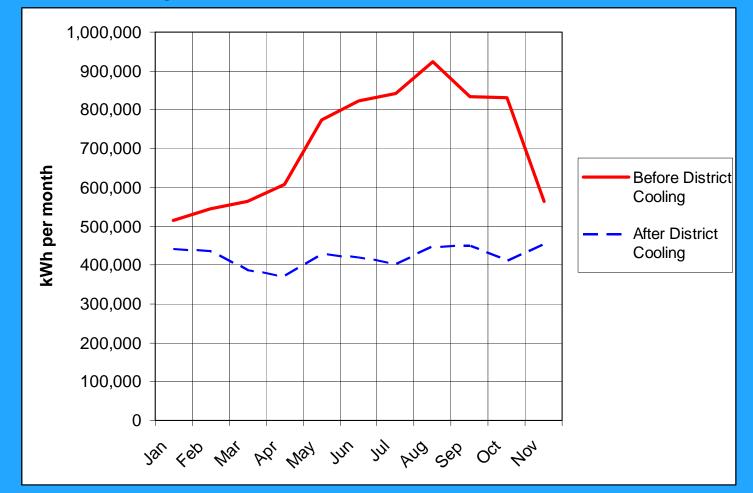
- Air-conditioning and Refrigeration Institute (ARI) 550/590
 - Integrated Part Load Value (IPLV)
 - Based on specific rating parameters for ECWT, LCWT, etc.
 - Calculated weighted average efficiency at part load capacities based on an assumed "typical season"
 - Non-standard Part Load Value (NPLV)
 - For conditions other than the standard ARI conditions
 - Mix of case-specific and standard ECWT assumptions
 - NPLV does not predict actual efficiency, but is useful for comparison of chiller alternatives
- ESEER
 - European index equivalent to the ARI IPLV

Standards

- ASHRAE Standard 90.1 (American Society of Heating, Refrigerating and Air-Conditioning Engineers)
 - Chiller efficiency at specified rating conditions and with specific test procedures, for 3 chiller sizes
 - Cooling tower fan and condenser pump efficiency at design conditions
- Energy Performance of Buildings Directive (EPBD)
 - European Union (EU) directive on the energy performance of buildings (2002/91/EC)
 - Requires Member states to develop a calculation method for the energy performance of buildings
 - EU has developed a standard to be used at a Europe-wide level

Monitored chiller plant efficiencies

Plant type	Plant size (tons)	Annual total plant efficiency (kW/ton)
Air cooled	176	1.50
Variable speed screw	440	1.20
Ultra-efficient all variable speed with oil-less compressors	750	0.55
District cooling plant	3200	0.85


Buildings converted to district cooling

- Surveyed 11 commercial district cooling utilities and over 70 campus district cooling systems
- Sought data on "before and after" power consumption for buildings converted to district cooling
- Only 4 valid data-sets

Gross Chemistry Building, Duke University

Power consumption before and after conversion to district cooling

Summary of survey results

Building Name	Location	Chiller type	Calculation method	Average annual kW/ton
Gross Chemistry	Duke University, NC	Water-cooled	1	1.33
(Confidential)	Phoenix, AZ	Water-cooled	1	1.25
ITS Franklin	UNC Chapel Hill, NC	Air-cooled	2	1.21
Cheek Clark	UNC Chapel Hill, NC	Air-cooled	1	0.92

Calculation Methods

- 1. Based on electricity consumption before and after connection to district cooling, and cooling consumption following connection.
- 2. Submetering of chiller system.

Thanks for your attention!

Questions?

© 2008 IEA-DHC