· · · · · · · · ·	
· · · · · · · · · · · ·	Workshop on ageing of district heating pipes
	Hosted by SIS and RISE
· · · · · · · · · · ·	SIS: Bledar Beqiri
	RISE: Alberto Vega, Ignacy Jakubowicz, Jan Henrik Sällström, Nazdaneh Yarahmadi
· · · · · · · · · ·	2023-04-18

Welcome

- Thank you, SIS
- The overall purpose is to link ongoing research projects to standardization work
- Three projects
 - Effects of mechanical loads on ageing of district heating pipes (Energiforsk)
 - Long term effects of repetitive axial loads on DH pipes and their importance for service life (Swedish Energy Agency)
 - IEA DHC Annex Task Shared Project 6: Status assessment, ageing, lifetime prediction and asset management of District Heating Pipes
- Previous project report from 2022 by RISE
 - https://energiforsk.se/program/futureheat/rapp orter/liftetime-predictions-and-statusassessments-2022-872/

LIFETIME PREDICTIONS AND STATUS ASSESSMENTS OF DISTRICT HEATING PIPELINES

REPORT 2022:872

Agenda Rev 2

- 1. Opening of the meeting with a welcoming statement by SIS and RISE
- 2. Short presentation of the people present: Please, try to limit yourself to ONE minute, give your name, affiliation, and few words about your work/company
- 3. Introduction by RISE
- 4. To get an interactive workshop we change between introductive presentations and discussions
- 5. Views on conditions of district heating networks
 - a. Introduction by RISE
 - b. AGFW: Failure mechanisms after losing the adhesion & effects of loads on cushions
 - c. General discussion
- 6. Views on other failure mechanisms besides loss of adhesion (This issue can be extended to all types of DH pipes)
 - a. Introduction by RISE
 - b. Swedenergy: Failure mechanisms
 - c. General discussion

- 7. Views on status assessment methods
 - a. Introduction by RISE
 - b. IPF & IMA: Thermogravimetric Analysis: A tool for status assessment in pre-insulated pipes
 - c. General discussion
- 8. Views on accelerated ageing and lifetime estimations (temperature, time, models, tests, evaluations)
 - a. Introduction by RISE
 - b. RISE: Accelerated ageing and lifetime estimations –Standardization vs Research
 - c. General discussion
- 9. Summing up, conclusions
- 10. Closing of the meeting

Purpose

- Compile knowledge about the condition of the district heating (DH) networks
- Compile other failure mechanisms than loss of adhesion for pre-fabricated rigid DH-pipe
 - Also failures for concrete ducts and flexible pipes can be discussed
- Compile knowledge about status assessment methods
- Agree on conditions for accelerated ageing or compile remaining verification tests that needs to be done before we can agree (temperature, time, tests, evaluations)
- Compile knowledge about lifetime estimations (models, tests, evaluations)
 - What should be done to achieve better lifetime estimations?

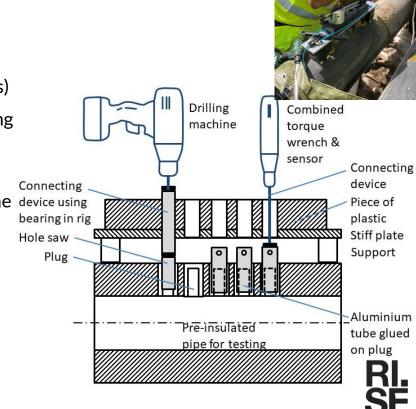
Status of DH networks

- Most pre-fabricated rigid DH pipes examined in previous project finished 2022, had sufficiently good status for continued operation
 - Pipes had **not** been exposed to high operating temperatures for many years (less than 30 years at 95 ° C)

• AGFW: Failure mechanisms after losing the adhesion & effects of loads on cushions

Other pipes and failure mechanisms

- For pre-fabricated rigid DH pipes many scientists have studied the failure mechanism loss of adhesion
- Which other failure mechanisms should be considered?
- We may treat **ALL** types of DH pipes
- Rigid DH pipes
 - Leakage at casing joints (caused during installation, high temperatures of casing with shrink fit joints)
- Concrete ducts
 - Corrosion of service pipes from outside
- Flexible pipes
 - Degradation of service pipes (PB, PEX, ...)
 - Degradation of PUR insulation due to diffusion of moisture throw plastic service pipes



 Swedenergy: Failure mechanisms

Status assessment methods

- Tests for determining the status
 - Mechanical shear strength tests
 - FTIR analysing chemical structure
- RISE PipeOpsy (pre-fabricated single rigid DH pipes)
 - Field tests with RISE Plug test method (applying a torque for twisting off a plug)
 - FTIR analysis of the foam of the retrieved plug to compare absorption indices representing the urethane bonds C=O and N-H
 - Calculated the time at a certain reference temperature, to quantify the usage of the pipe
 - Restore the pipe
- IPF & IMA: Thermogravimetric Analysis

Accelerated ageing tests

- Elevated temperature
 - 140°C (Proposed by RISE)
- Testing time
 - 0,5-1 year (Consequence of 140°C)
- Other environmental parameters
 - The effect of the shear load is further investigated by RISE in an ongoing project
 - Effect of oxygen diffusion through the casing

Lifetime estimations

- Models
 - Can an Arrhenius relationship be used?
- Tests for determining the status
 - Field tests with eg RISE Plug test method
 - FTIR analysis of the foam at two positions of the retrieved plug
- Evaluations of status
 - Compare results of supply and return
 - Compare changes of FTIR spectra inflicted by changes of molecular structure
- RISE: Accelerated ageing and lifetime predictions Standardization vs Research

