District Heating and Cooling Networks in an Integrated Energy System Context – approaches within the IEA DHC Annex TS3

4th International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg (Denmark), 13-14 November 2018

Andrej David², Jay Hennessy⁷, Anton Ianakiev⁶, Tanja Kneiske⁵, Ingo Leusbrock³, Daniel Muschick⁴, Dietrich Schmidt⁵, <u>Ralf-Roman Schmidt¹</u>, Olatz Terreros¹, Edmund Widl¹

The IEA technology cooperation program (TCP) on district heating and cooling (DHC)

- a platform for international experts
- dedicated to helping to make DHC and CHP powerful tools for energy conservation and the reduction of environmental impacts of supplying heat
- Current members: Austria, Canada, China, Denmark, Finland, France, Germany, Korea, Norway, Sweden, United Kingdom, United States of America.
- The projects within the IEA DHC TCP are either
- Funded through a *cost-sharing* approach (by the member states), e.g. MEMPHIS
- Funded through a *task-sharing* approach (the participants contribute resources inkind for connecting existing national and international projects), e.g. Annex TS3
- More information: <u>http://www.iea-dhc.org/home.html</u>

IEA DHC Annex TS3: Hybrid Energy Networks - Background

- The integration of the electricity/ gas grids and heating/ cooling networks is considered as one of the key measures for decarbonizing the energy system (aka "sector coupling"). This
 - triggers important
 synergies, that couldn't
 be realised by optimizing
 the sectors individually.
 - is connected to several challenges, such as an increasing competition between the energy domains and a higher complexity.

- to promote the opportunities and to overcome the challenges for district heating and cooling networks in an integrated energy system context.
- provides a holistic approach for assessing, planning and operating hybrid energy networks,
- considers both technical (system configuration, operational strategy) and strategic aspects (business model, regulatory frame).

Expected results

- The primary result: a guidebook highlighting the relevant results of the different subtasks
- application areas and synergy potentials,
- Comparison of international case studies,
- methodological approaches and tools,
- Recommended business models, market design and regulations
- The Annex TS3 offers an unique opportunity for
- networking between experts from academia and industry,
- dedicated know-how exchange at industry workshops and
- <u>special sessions</u> at key conferences as well as an
- intensive <u>cooperation</u> with the International Smart Grids Action Network (and others)

Schedule and status

- **Definition workshop**, 21.09.2017 bmvit (Vienna/Austria) with 28 participants
- **1st preparation workshop**, 25/26.04.2017 RISE (Gothenburg/ Sweden) with 26 participants
- 2nd preparation workshop, 10/11.10.2018; GEIRI (Berlin/ Germany) with 29 participants
- → Start of the working phase beginning of 2019
 - 1st working phase WS: spring 2019 (tbd)

cooperation with other initiatives

- International Smart Grid Action Network (IEA ISGAN)
 - Official cooperation with Joni Rossi (RISE, OA of Annex 6) on
 - regular bilateral communication;
 - shared networking activities (e.g. common workshops, participation in conferences) and the
 - o development of fact sheets for policy makers
- Energy in Buildings and Communities (IEA EBC)
 - Possible cooperation with a new Annex initiative from Canada, details tbd
- Energy Conservation through Energy Storage (IEA ECES)
 - Possible cooperation with the new Annex initiative "Flexible Sector Coupling" – details tbd

Structure

Example Subtask A: Identifying the Potential of Decentralised Energy Storages for Integrating Fluctuating Sources

→ Simulation using EnergyPLAN

Dadi Sveinbjörnsson, results from IEA ECES Annex 28

Results: suggested energy system redesign measures

- DH \rightarrow inexpensive storages
- Electric vehicles with smart charging → cost-effective distributed electrical storage.
- Electrical interconnections to island systems (where possible)

Recommendations for distributed energy storage and conversion

- Flexible sector coupling
- Individual heat pumps
- Flexible electricity demand
- Thermal energy storage
- Reduction of electrical energy storage investment costs is very important!

Example Subtask B: assessment of modeling and optimization tools for integrated energy systems

Multi-domain modeling languages

- closed representation of the overall system with the help of one consistent language
- simulation of the system is done using a dedicated simulation tool

simulation coupling (cosimulation)

- modeling of subsystems with the help of domain-specific languages and tools
- dynamic coupling (data exchange) of the individual tools at runtime
- e.g., Pitch pRTI (HLA), FUMOLA, mosaik, ...

Example Subtask C: Johanneberg Science Park and the FED Project (Fossil-free Energy Districts)

www.johannebergsciencepark.com/fed

energy storage

•

•

Example Subtask D: Market and regulation barriers for sector coupling in Germany

Christian Spalthoff, Fraunhofer IEE, Economic aspects of energy grid interaction

How do you get involved?

- The project is <u>open to new participants</u> during its whole runtime, however, an early involvement enables a deep interaction with the other participants.
- To join the project participants need to <u>bring completed</u>, <u>ongoing or</u> <u>upcoming projects</u> that address hybrid energy networks with a focus on DHC in the participants own country.
- Furthermore <u>resources for processing</u> the project results (e.g. translation) and <u>participating in the workshops</u> as well as special secessions are required.

Thank you for your attention!

Contact:

Ralf-Roman Schmidt (Operating Agent)

AIT Austrian Institute of Technology GmbH

M +43(0) 664 235 19 01, e-mail: Ralf-Roman.Schmidt@ait.ac.at

