SELECTED RESULTS OF THE IEA DHC ANNEX TS3 HYBRID ENERGY NETWORKS

INTRODUCTION/ MOTIVATION

District heating and cooling (DHC) networks are traditionally linking the heating & cooling and electricity sector (and often also the gas sector) through combined heat and power (CHP) plants. However, the role of CHP plants will significantly change (competition for renewable fuels with hard-to-decarbonise sectors + an increasing share hydro, wind and PV, less CHP electricity required)

We will need other heat (and cold) sources
We will need other coupling points to provide flexibility

A CLASSIFICATION APPROACH*

INTRODUCTION/ MOTIVATION

- District heating and cooling (DHC) networks are traditionally linking the heating & cooling and electricity sector (and often also the gas sector) through combined heat and power (CHP) plants. However, the role of CHP plants will significantly change (competition for renewable fuels with hard-to-decarbonise sectors + an increasing share hydro, wind and PV, less CHP electricity required)

- We will need other heat (and cold) sources
- We will need other coupling points to provide flexibility

A CLASSIFICATION APPROACH*

*This classification differs from the 4G DHC networks concept (Lund et. al=)

INTRODUCTION/ MOTIVATION

District heating and cooling (DHC) networks are traditionally linking the heating & cooling and electricity sector (and often also the gas sector) through combined heat and power (CHP) plants. However, the role of CHP plants will significantly change (competition for renewable fuels with hard-to-decarbonise sectors + an increasing share hydro, wind and PV, less CHP electricity required)

We will need other heat (and cold) sources
We will need other coupling points to provide flexibility

A CLASSIFICATION APPROACH*

This classification differs from the 4G DHC networks concept (Lund et. al=)

INTRODUCTION/ MOTIVATION

- District heating and cooling (DHC) networks are traditionally linking the heating & cooling and electricity sector (and often also the gas sector) through combined heat and power (CHP) plants. However, the role of CHP plants will significantly change (competition for renewable fuels with hard-to-decarbonise sectors + an increasing share hydro, wind and PV, less CHP electricity required)

- We will need other heat (and cold) sources
- We will need other coupling points to provide flexibility

A CLASSIFICATION APPROACH*

This classification differs from the 4G DHC networks concept (Lund et. al=)

INTRODUCTION/ MOTIVATION

- District heating and cooling (DHC) networks are traditionally linking the heating & cooling and electricity sector (and often also the gas sector) through combined heat and power (CHP) plants. However, the role of CHP plants will significantly change (competition for renewable fuels with hard-to-decarbonise sectors + an increasing share hydro, wind and PV, less CHP electricity required)

- We will need other heat (and cold) sources
- We will need other coupling points to provide flexibility

A CLASSIFICATION APPROACH*

This classification differs from the 4G DHC networks concept (Lund et. al=)

INTRODUCTION/ MOTIVATION

- District heating and cooling (DHC) networks are traditionally linking the heating & cooling and electricity sector (and often also the gas sector) through combined heat and power (CHP) plants. However, the role of CHP plants will significantly change (competition for renewable fuels with hard-to-decarbonise sectors + an increasing share hydro, wind and PV, less CHP electricity required)

- We will need other heat (and cold) sources
- We will need other coupling points to provide flexibility

A CLASSIFICATION APPROACH*

This classification differs from the 4G DHC networks concept (Lund et. al=)