Technology Collaboration Programme

TS3 Webinar on "Hybrid Energy Networks"

Integrating district heating and cooling networks with the electricity and gas grid Tuesday, 27th April 2021, 9:00 to 17:00 (CET)

A side event of the Mission Innovation Austria Online Conference https://missioninnovationaustriaweek.at/

Contact: Ralf-Roman Schmidt (AIT); ralf-roman.schmidt@ait.ac.at

This Webinar is held in the framework of the international cooperation program IEA DHC Annex TS3 "Hybrid Energy Networks". More information at http://www.iea-dhc.org/the-research/annexes/2017-2020-annex-ts3-draft.html The Austrian participation in the IEA DHC Annex TS3 is financed by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK)

Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

IEA Research Cooperation

Technology Collaboration Programme

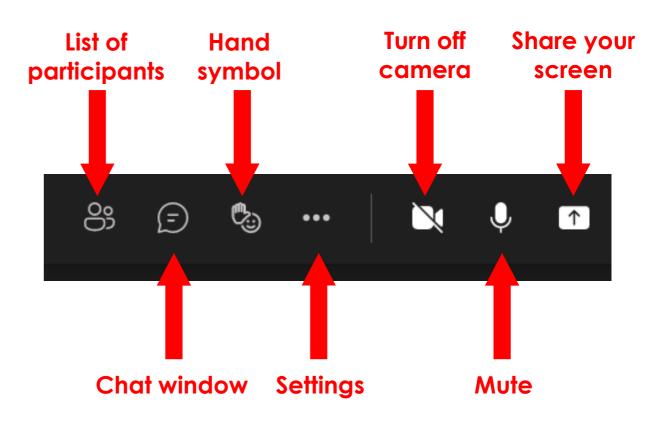
TS3 Webinar on "Hybrid Energy Networks"

Block II: Barriers, trends and solutions for the creation of an integrated energy market

This Webinar is held in the framework of the international cooperation program IEA DHC Annex TS3 "Hybrid Energy Networks". More information at http://www.iea-dhc.org/the-research/annexes/2017-2020-annex-ts3-draft.html The Austrian participation in the IEA DHC Annex TS3 is financed by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK)

Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

IEA Research Cooperation



Webinar Etiquette

- The microphone should be muted by default
- Requests to speak are reported via the hand symbol
- Please state your name and institution before you speak
- Please turn off your webcam!
 The camera can be used at short notice for spoken contributions.
- We will make a "group-photo" at the end of each block

IEA DHC Annex TS3: Hybrid Energy Networks

- Aim: To promote the opportunities and to overcome the challenges for district heating and cooling networks in an integrated energy system context
- **Funded** through a task-sharing approach (the participants contribute resources in-kind for connecting existing national and international projects)
- Lead: Ralf-Roman Schmidt (AIT); ralf-roman.schmidt@ait.ac.at
- **Runtime**: Fall 2017 March 2022
- Expected results: An assessment of suitable technologies and concepts; country reports; collection and assessment of international case studies; a review of existing methods and tools; best practice guidelines; a final guidebook
- More information at https://www.iea-dhc.org/the-research/annexes/2017-2021-annex-ts3-draft

Agenda

Time	ltem		
09:15 – 11:00 CET	Block I – Integrated district heating and cooling networks: introduction and best practices		
11:15 – 12:45 CET	Block II – Barriers, trends and solutions for the creation of an integrated energy market		
13:30 – 15:00 CET	Block III – country-based constraints and synergies on a national level		
15:30 – 17:00 CET	Block IV – handling the complexity: Advanced tools and methods for planning and operation		

Agenda Block II - Barriers, trends and solutions for the creation of an integrated energy market

11:00	Testing of technical connections
11.15	Welcome and introduction into the webinar (Ralf-Roman Schmidt, AIT)
	EU legal framework for energy communities (Achille Hannoset, European
	Commission/ Consumers, Local Initiatives, Just Transition)
	Local markets for energy and flexibility exchange (Wenche Tobiasson, RISE)
	Sector coupling: Overcoming regulatory obstacles with coupled systems
	(Michael Kalis, IKEM)
	Overview on different business models and the regulatory framework for hybrid
	energy networks (Dennis Cronbach, Fraunhofer IEE/ Inger-Lise Svensson, RISE)
	Discussions and feedback in breakout sessions
12:45	End of Block II

EU legal framework for energy communities (Achille Hannoset, European Commission/ Consumers, Local Initiatives, Just Transition)

Energy communities – implementation of the Clean Energy Package

Content

- ✓ The purpose of energy communities and existing models
- Classification of Renewable Energy Communities and Citizen Energy Communities
- ✓ Distinguishing jointly acting self-consumers and energy communities
- ✓ Activities of energy communities: energy sharing and tariffs

Disclaimer

This presentation aims to collect knowledge on energy communities and guide the discussions on the topic.

For this purpose, it uses examples from some Member States. Examples that are just as good might exist in other Member States

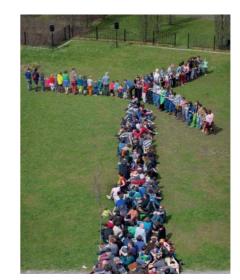
This presentation does neither represent an official interpretation nor an endorsement of certain projects.

The purpose of energy communities and existing models

Purpose of consumer empowerment

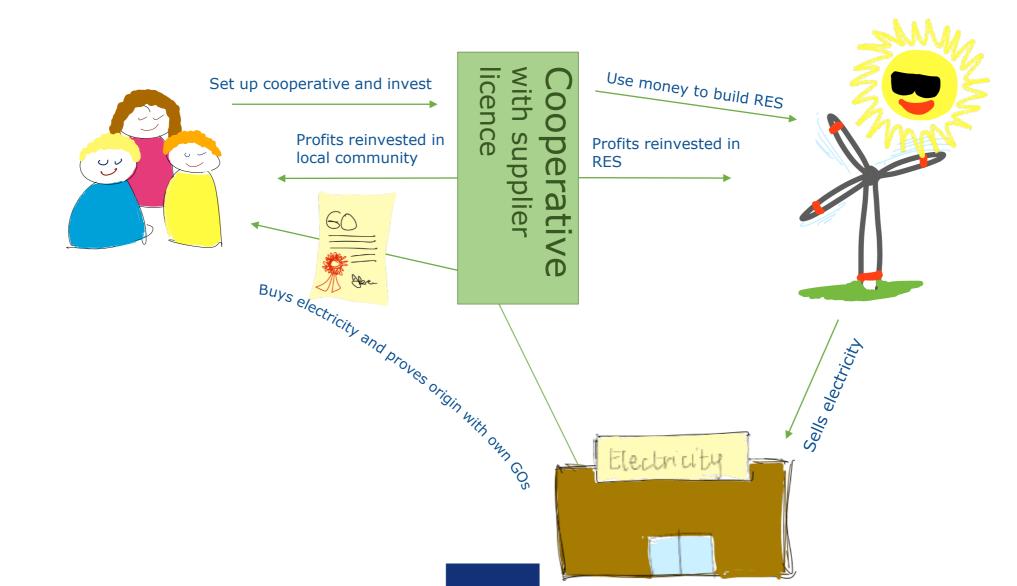
Empowering citizens

- Energy communities are an effective tool to increase public acceptance of new projects
- Energy communities are a tool to mobilise private capital for the energy transition
- Energy communities could be a tool to increase flexibility in the market

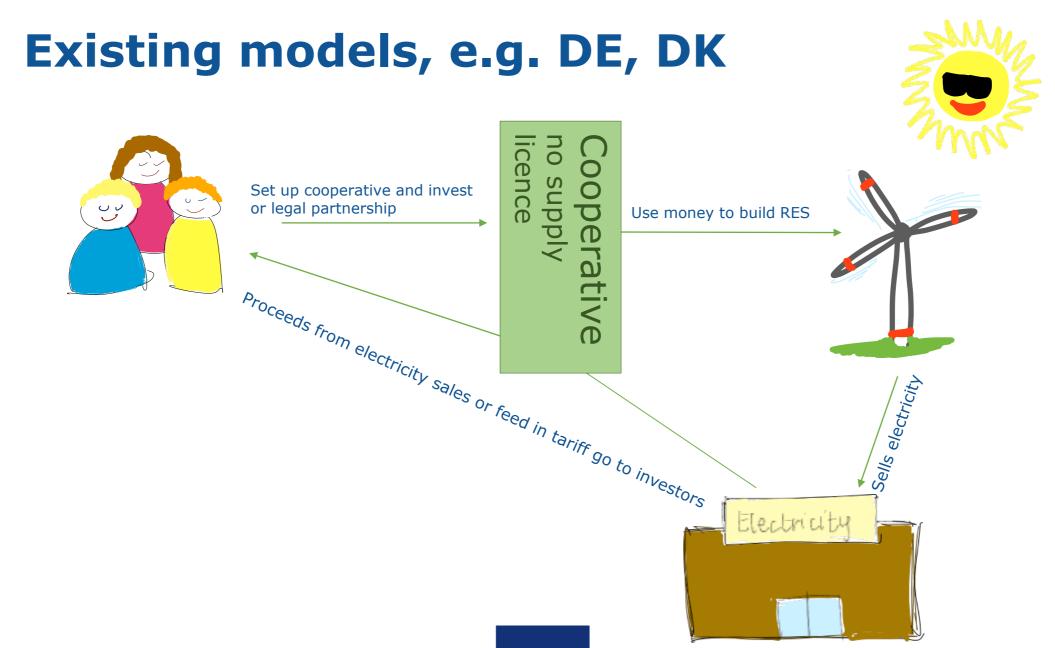

Consumer empowerment

© Raboe

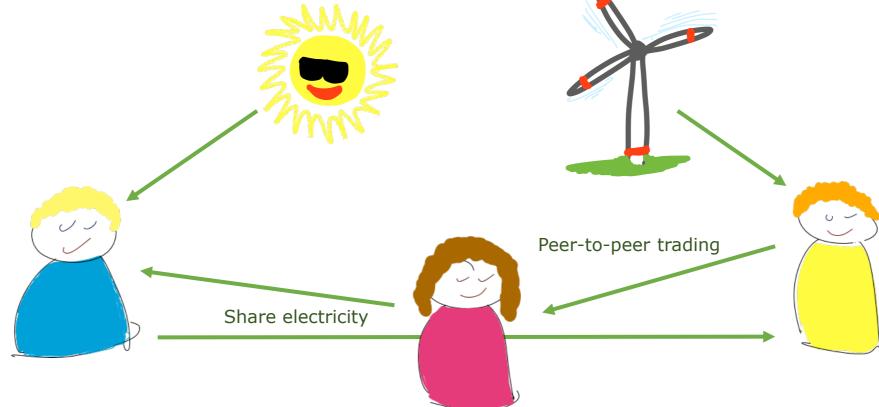
 $\ensuremath{\mathbb{C}}$ Thinkstock


© REScoop.eu

Renewable Energy Directive: all types of *renewable energy*


Electricity Directive: all types of *electricity*

Existing models, e.g. BE, ES



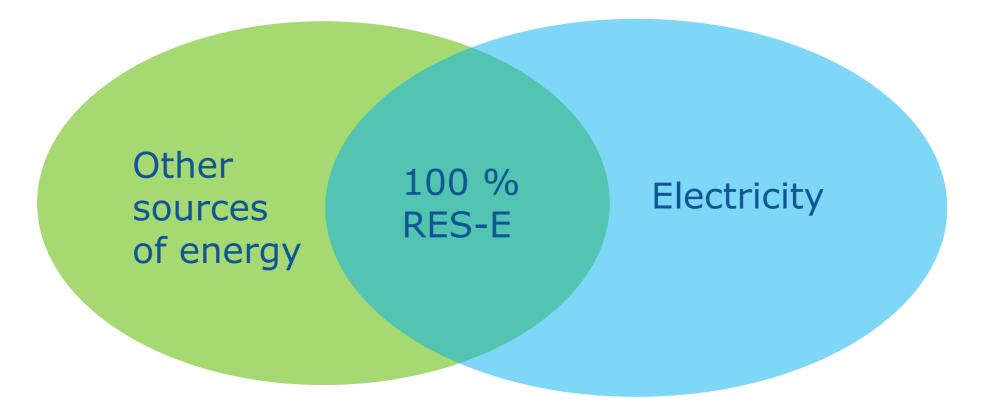
Additional possibilities due to CECs and RECs

- Innovative: energy sharing and peer-to-peer possibility
- Challenge: redefining consumer/supplier relationship and regulate new configurations appropriately

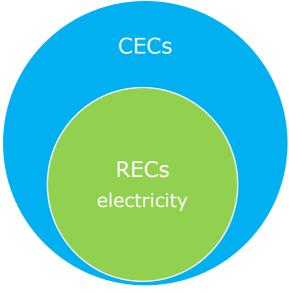
Classification of Renewable Energy Communities and Citizen Energy Communities

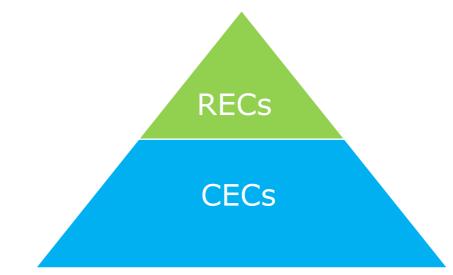
Art. 16 of the Directive on the Internal Market for Electricity Directive on "Citizen Energy Communities"

Art. 22 of the Directive on the promotion of the use of energy from renewable sources on "Renewable Energy Communities"


Art. 16 of the Directive on the Internal Market for Electricity Directive on "Citizen Energy Communities"

Art. 22 of the Directive on the promotion of the use of energy from renewable sources on "Renewable Energy Communities"


Art. 2 on definitions: makes clear that renewable energy communities are a **social concept**, rather than financial profits



RECs and CECs - overview

- ✓ Promotion of RES
- ✓ Favorable conditions for RES support
- Strict governance and participation criteria
- ✓ Geographical proximity

- ✓ Recognition as a market actor
- Ensure level playing field and non-discrimination
- ✓ Strict governance criteria, but open membership
- ✓ No geographical proximity

	CEC	REC	
Energy	Electricity	Renewable energy	
Membership	Any entity Natural persons, local autho SMEs		
Control	Effective control by natural persons, local authorities, SMEs	Effective control by natural persons, local authorities, SMEs located in the proximity of the projects	
Purpose	Primary purpose to provide environmental, economic or social community benefits for members or the local area		
Activities	Generation, storage, selling, sharing, aggregation or other energy services, distribution		

Energy communities as DSOs

Can energy communities act as a DSO?

- → As regards electricity, MS may decide whether to grant CECs the right to manage distribution networks → Yes, if Member States allow it.
- → RECs can in principle act as DSO, this is clear from Art. 22 (4) ("RECs are not subject to discriminatory treatment with regard to their activities as [...] DSOs [...].") But when dealing with electricity, they are a subset of CECs, so it depends on the national regulatory framework.

Distinguishing jointly acting selfconsumers and energy communities

RECs and jointly acting

	Energy community	Jointly acting self- consumers	
Geographical scope	Proximity of RES installations	Limited to the same building (unless enlarged by MS)	
Membership	Open as long as criteria of definition are met	Limited to people living in the same building/apartment block (unless enlarged by MS)	
Legal form	Legal entity required	Legal entity not required by the directive (contract between individuals)	
Purpose	Provide environmental, economic or social benefits	Not specified in article	
Electricity sharing	Must be possible without prejudice to network charges		

Activities of energy communities

Activities of energy communities: existing regulation

Produce	 Not new, like any other generator 	
Consume	 The legal entity can use the electricity produced by the installations and provided by external suppliers 	
Store	 Not specific to energy communities 	
Sell	 Not new. Legal entity can sell the electricity to its members, on the markets, through PPAs, like any other generator, or receives feed in tariffs 	
Share within the community	 Emerging concept: e.g. autoconsommation collective in FR or in ES 	

Considerations: Electricity sharing

Sharing = supply?	 Depends, defining it as supply might be disproportionate (and hence not in line with article 16.1 e, Elec Dir) Sharing needs to be possible
Distinction between sharing and supply	 Sharing is multidirectional, and more ad hoc; supply from one steady source Possible criteria: size of installation, level of professionalisation Check: regulation for sharing economy, Airbnb, other platforms
Who can share	 Legal entity with its members (could be supply) Members with RES installations with other community members (if enlarged by MS)
How can it be done	 Through the DSO (e.g. autoconsommation collective) Through private energy service providers and software solutions

Energy sharing

Category of "sharing"	Energy shared	Parties to the sharing	Scope of sharing	Requirement for MS?	
Renewables self-		same customer	"within its premises within close boundaries" [physical boundaries]	mandatory	
consumer	Renewable electricity	"within other premises" [based on ownership]	optional		
Jointly acting renewables self- consumer		different quetemore	located within the same building [physical boundaries]	mandatory	
REC	Renewable energy	different customers	to other members, without geographical limitation [based on membership]	mandatory	
Active customer		same customer	"within its premises within close boundaries" [physical boundaries]	mandatory	
	Any electricity		"within other premises" [based on ownership]	optional	
Jointly acting active customers		different customers	?	mandatory	
CEC			to other members, without geographical limitation [based on membership]	mandatory	

Applicable charges

		Network charges	Other charges or fees	
Article 16 EMD	General rule	cost-reflective network charges [] ensuring that	non-discriminatory, fair, proportionate and	
Sharing within a CEC		they contribute in an adequate and balanced way	transparent charges [] ensuring that they	
		to the overall cost sharing of the system	contribute in an adequate and balanced way to the	
			overall cost sharing of the system	
	When sharing	applicable charges [] in accordance with a tra	nsparent CBA of distributed energy resources by	
		tional authorities		
	the CEC			
Article 22 RED	General rule	cost-reflective network charges, [] ensuring that	relevant charges, levies and taxes, [] ensuring that	
REC		they contribute in an adequate, fair and balanced	they contribute in an adequate, fair and balanced	
		way to the overal cost sharing of the system, in line	way to the overal cost sharing of the system, in line	
		with a transparent CBA analysis of distributed	with a transparent CBA analysis of distributed	
		energy sources by national competent authorities	energy sources by national competent authorities	
Article 15 EMD		cost-reflective, transparent and non-discriminatory	no disproportionate or discriminatory charges	
Active customers		charges, accounting separately for the electricity fed		
		and electricity consumed, ensuring that the		
		contribute in an adequate and balanced way to the		
		overall cost sharing of the system		
Article 21 RED	Elec. injected in /	cost-reflective network charges	no disproportionate or discriminatory charges	
Individual RES SC, i.e. within	taken from grid 👌			
premises located within	Elec. stays behind	no charges	no charges (except in the 3 cases foreseen by Art. 21	
confined boundaries	the meter 🔍		(3) RED)	
Sharing in "joint RES SC", ie		charges "applicable to each renewables self consumer"		
within the same building		*		

Thank you for your attention

Technology Collaboration Programme

Local markets for energy and flexibility exchange (Wenche Tobiasson, RISE)

Local markets for energy and flexibility exchange Wenche Tobiasson, PhD **Electric Power Systems, RISE**

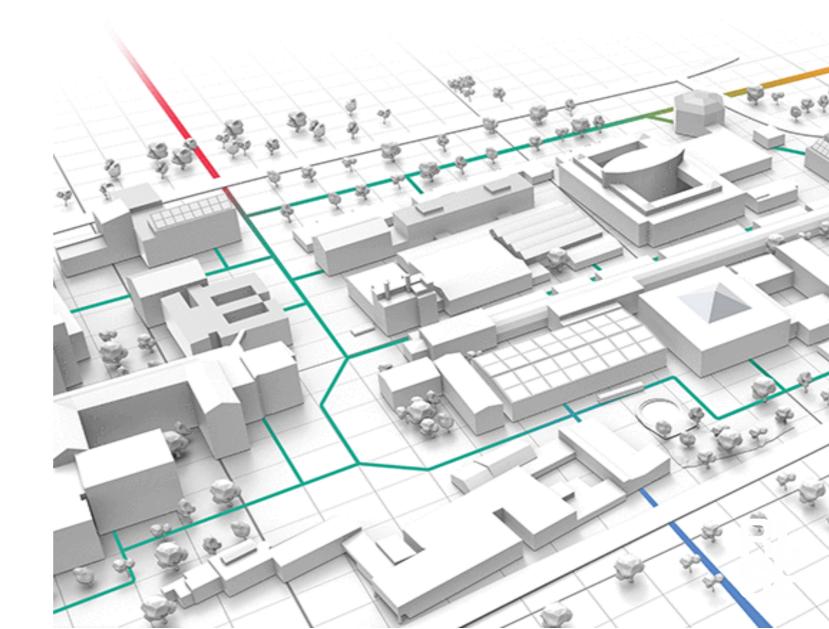
Local market defined

- Local energy or flexibility market is used to describe a marketplace that coordinate the generation, supply, storage, transport, and consumption of energy from **decentralised** energy resources within a **confined** geographical area.
- Flexibility: modifying generation and/or consumption patterns in reaction to an external signal (such as a change in price) to provide a service within the energy system.

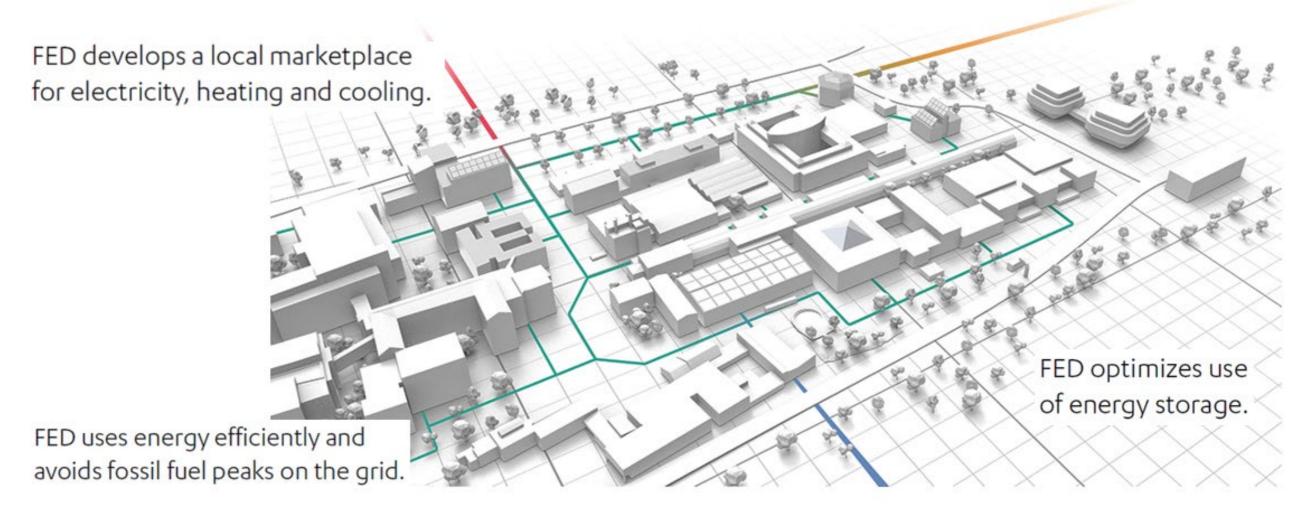
Needs and benefits of local markets

• Needs

- Network congestion long lead times
- Decentralised approach
- Smaller scale generation
- Prosumers
- **Potential benefits** findings from ISGAN Annex 6 Survey
 - Deferred network investments
 - Reduced network costs and increase network utilisation
 - Increase consumer engagement
 - Higher share of renewable energy


Further flexibility and efficiency benefits possible through hybrid markets

 \rightarrow increased social welfare through efficiency improvements


Example market designs

- FED central clearing local marketplace for <u>energy</u> (electricity, district heating and cooling)
- FlexiGrid peer-to-pool market for <u>flexibility</u> (electricity only)

Fossil Free Energy Districts - FED

FED Energy Market – Main characteristics

- Two-sided auction (demand and supply)
- Integrated market for electricity, heating and cooling
- Local infrastructure explicitly included
- Flexibility instruments included
- Locational Marginal Pricing
- Hourly trading, gate closure close before start of hour

FED - bids and flexibility instruments

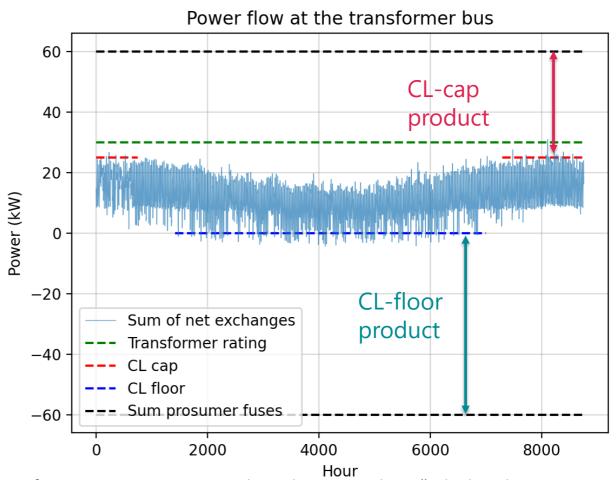
- Simple bid structure:
 - Energy carrier, hour, supply or demand, location, a single quantity (in kWh) and a single valuation (in currency/kWh)
 - Trading horizon 9h advisory, 1h final
- Bid valuation:
 - Demand bid: Highest price that the bid will be accepted at
 - Supply bid: The lowest price that the bid will be accepted at
- Bid dependency:
 - A relation between individual bids

FED Energy Market – example market participants

ID	Description
SimpleBld_E	Building, no flexibility, el. only
SimpleBld_H	Building, no flexibility, DH only
TimeBld_E	Building with load shift, el. only
TimeBld_H	Building with load shift, DH only
CarrierBld_EH	Building with energy carrier shift
Grid_E	Electricity retailer
Grid_H	DH retailer
Solar_E	PV panel
HeatPump_EH	Heat pump (cons. el., prod. DH)
CHP_EH	CHP plant (prod. el. and DH)

FlexiGrid project

- H2020 funding, running over 3.5 years, total budget €8.15m
- FlexiGrid will define, test, deploy and demonstrate markets and market mechanisms that incentivise flexibility, in particular for mitigating short-term and long-term congestion
- Peer-to-pool, peer-to-peer and self-adaptive market structures will be developed and demonstrated across four demo sites (Bulgaria, Sweden, Switzerland, Turkey)
- An IoT platform will be developed and utilised in the demos



FlexiGrid peer-to-pool market

Traded product - flexibility service, flexibility product, or simply flexibility

- Capacity-limit products
 - Capacity-limit floor (CL-floor product)
 - Capacity-limit cap (CL-cap product)
- → Limiting the sold/bought connection capacity/fuses

Reference: C. Ziras, C. Heinrich, and H. W. Bindner, "Why baselines are not suited for local flexibility markets," *Renewable and Sustainable Energy Reviews*, vol. 135, p. 110357, Jan. 2021

Market actors

- DSO
- The (main) buyer of the product
- Flexibility service providers:
 - Aggregators
 - The seller of an aggregated product
 - End-user
 - The seller of the product directly to the market or contracted via an aggregator
- Market operator:
 - A neutral, independent party managing the market, receiving the bids, clearing, settlement, etc

Market structure and trading horizons

- Long-term: only <u>reservation</u>, an <u>activation price cap</u> from the DSO
 - For reliability, decision making, planning (will not be demonstrated)
 - Payments: Game theory allocation mechanisms
- Short-term: <u>activation</u> only
 - The cleared <u>flex providers</u> in the long-term are <u>obliged</u> to bid with <u>prices</u> less or equal to the long-term activation price cap
 - The <u>DSO</u> is <u>obliged</u> to bid with <u>prices more or equal</u> to the long-term activation price cap
 - New competitive providers can participate
 - Payments: Game theory allocation mechanisms
- **Real-time**: <u>adjustments</u> due to forecast errors or failures
 - Everyone can be the buyer or seller
 - Continuous market or auction market (tbd)
 - Payments: Pay-as-bid

Important aspects when designing local markets

- Size of the market
 - Small or granular enough to solve locational problems but big enough to ensure market liquidity
- Value of flexibility
- Accurate measurements baselines
- Transparency
- Participants and responsibility (e.g. aggregators)
- Interaction with regional/national grid
- Interaction with wholesale markets

Wenche Tobiasson

wenche.tobiasson@ri.se

RISE — Research Institutes of Sweden AB · info@ri.se · ri.se

Technology Collaboration Programme

Sector coupling: Overcoming regulatory obstacles with coupled systems (Michael Kalis, IKEM)

The Climate Protection Institute

Institute for climate protection, energy and mobility

IKEM at a glance

Research

Project Management

NGO

- Founded in 2009
- Non-profit association
- Independent research institute
- Associated research institute of Greifswald University
- Accredited non-governmental organisation with the UN Economic and Social Council
- More than 80 projects with over 200 project partners
- Over 50 employees in Greifswald and Berlin

Research fields

Energy Law

Energy transition in transport

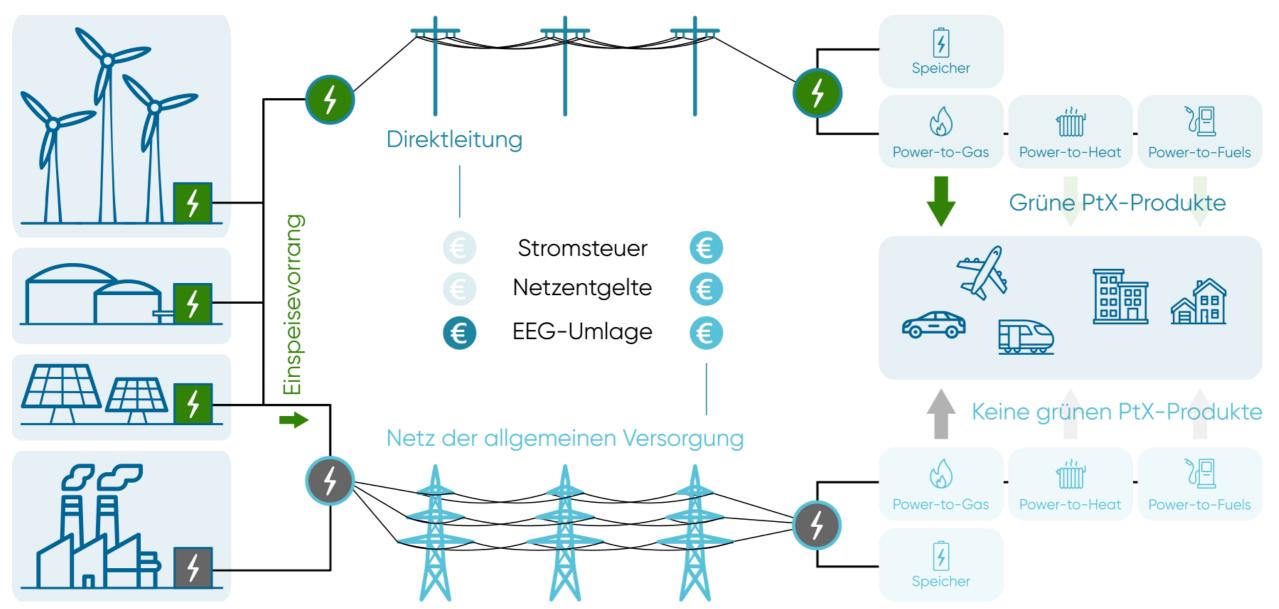
Energy and climate finance

Sustainability & Innovation

Mobility

Science and more

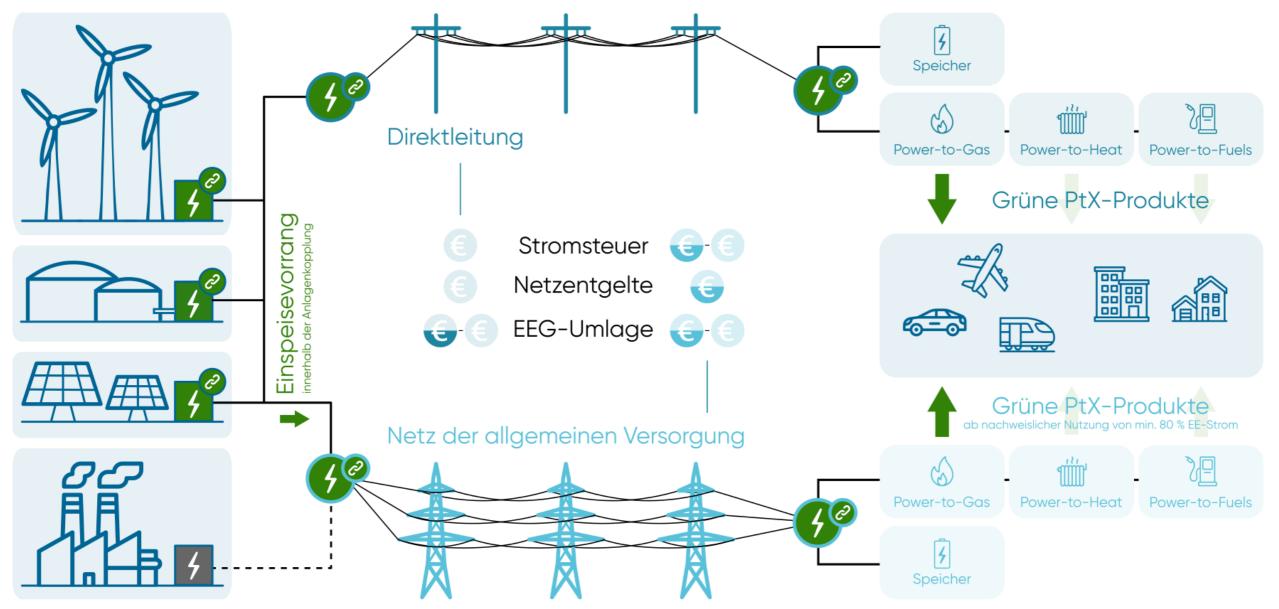
Sector coupling: Overcoming regulatory obstacles with coupled systems


Sector coupling: general regulatory obstacles

Status quo:

- Generated and potentially generated electricity from renewable energies partly not used (curtailment)
- Energy transition with slow progress in transport and heat sector
- Potential for decarbonization
- Technology Power-to-X with good technology readiness level
- Regulatory obstacles
 - Sector coupling systems generally have to pay state induced electricity costs (EEG-Umlage, taxes, grid charge)
 - hardly possible to develop a business case
 - Transferring the "green" (so to say renewable) electricity to the PtX-product when using grid supply is not possible
 - Grid supply is necessary for business case

Status quo



IKEM 2018. Mit Icons von Flaticon.com erstellt durch photo3idea_studio, Good Ware, Those Icons, Nikita Golubev, Smashicons, monkik, catkuro, mavadee, Daniel Bruce und Freepik.

Coupled systems as a new regulatory element

IKEM 2018. Mit Icons von Flaticon.com erstellt durch photo3idea_studio, Good Ware, Those Icons, Nikita Golubev, Smashicons, monkik, catkuro, mavadee, Daniel Bruce und Freepik.

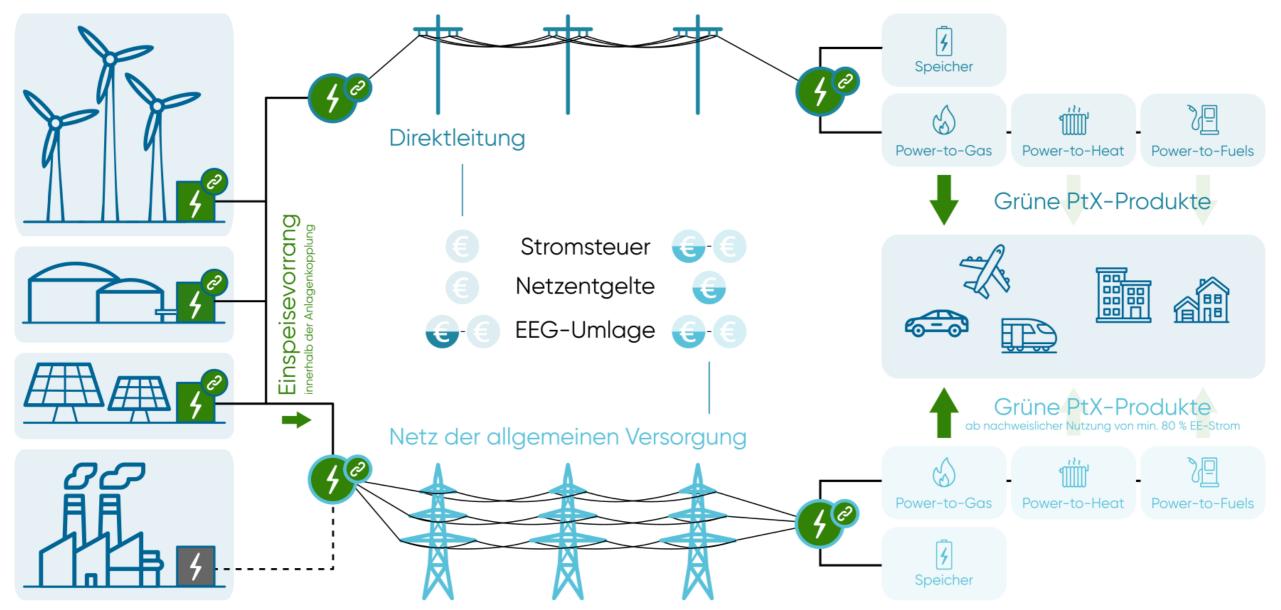
Main characteristics of coupled systems

- New (legal) definition for facilities, that overcomes the separation of renewable energy facility and sector coupling facility
 - renewable energy facility and sector coupling facility are coupled via direct line or (virtually) via grid
 - Coordinated energy generation and energy demand
- Far predominantly use of renewable energy
 - 80 % renewable energy necessary (Green PPA with quarter of an hour balancing)
 - Instead of common criteria "solely"
- New renewable energy facility to ensure additionallity
 - New renewable energy facility without financial aid and not accounted to expansion path

Main characteristics of coupled systems

Dispatchable renewable energy

- Renewable energy (not used in the coupled systems) from the coupled systems feed grid without priority
- Coupled PtX, storage and renewable energy facility do not supply volatile
- Compensation of state induced electricity costs
 - In tender coupled systems bid on necessary compensations of state induced electricity costs


Put into perspective: Coupled systems under the RED II?

Art. 27 III RED II (recital 90): *Electricity* that has been taken from the grid may be counted as fully renewable provided that it is produced exclusively from renewable sources and the renewable properties and other appropriate criteria have been demonstrated, ensuring that the renewable properties of that electricity are claimed only once and only in one end-use sector.

- bilateral renewables power purchase agreement
- temporal and geographical correlation
- element of additionality

Coupled facilities as a new regulatory element

IKEM 2018. Mit Icons von Flaticon.com erstellt durch photo3idea_studio, Good Ware, Those Icons, Nikita Golubev, Smashicons, monkik, catkuro, mavadee, Daniel Bruce und Freepik.

Thank you for your attention

Your contact person

MICHAEL KALIS Research assistant

+49 (0) 30 408 18 70-20 michael.kalis@ikem.de

www.ikem.de

Institut für Klimaschutz, Energie und Mobilität e.V.

Magazinstraße 15–16 10179 **Berlin**

Domstraße 20a 17489 **Greifswald** Technology Collaboration Programme

Overview on different business models and the regulatory framework for hybrid energy networks (Dennis Cronbach, Fraunhofer IEE/ Inger-Lise Svensson, RISE)

IEA TS3 Webinar On business models & regulatory boundary conditions for hybrid networks

Dennis Cronbach

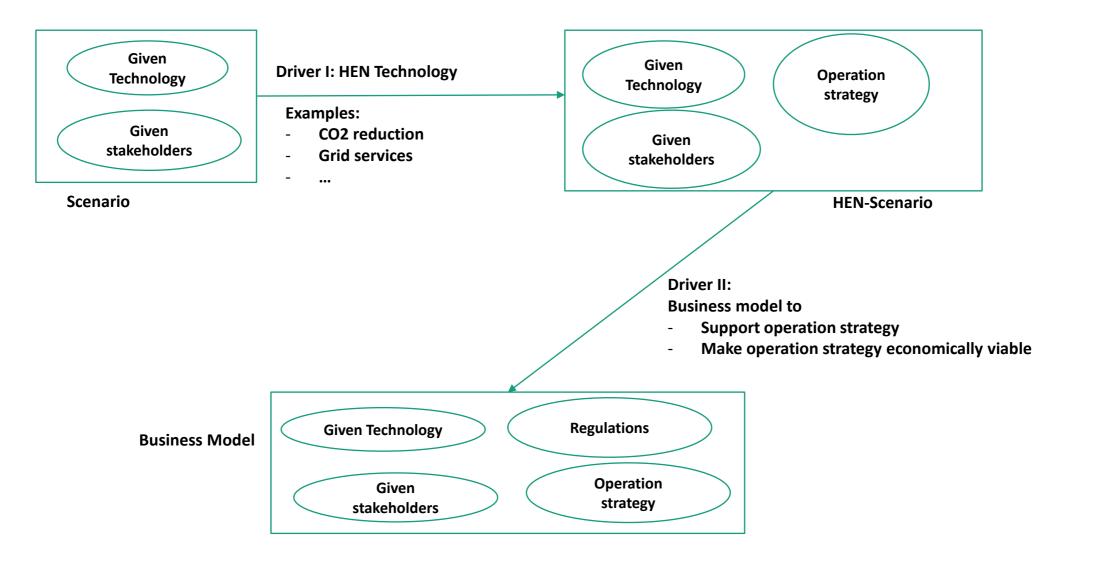
Inger-Lise Svensson

April 27th 2021

Questions to answer

- What trends can be identified regarding new business strategies for hybrid energy grids?
- What obstacles can be identified for implementing sector coupling strategies?
- Regarding obstacles: What solution approaches exist?
- Are there parallels between different countries?

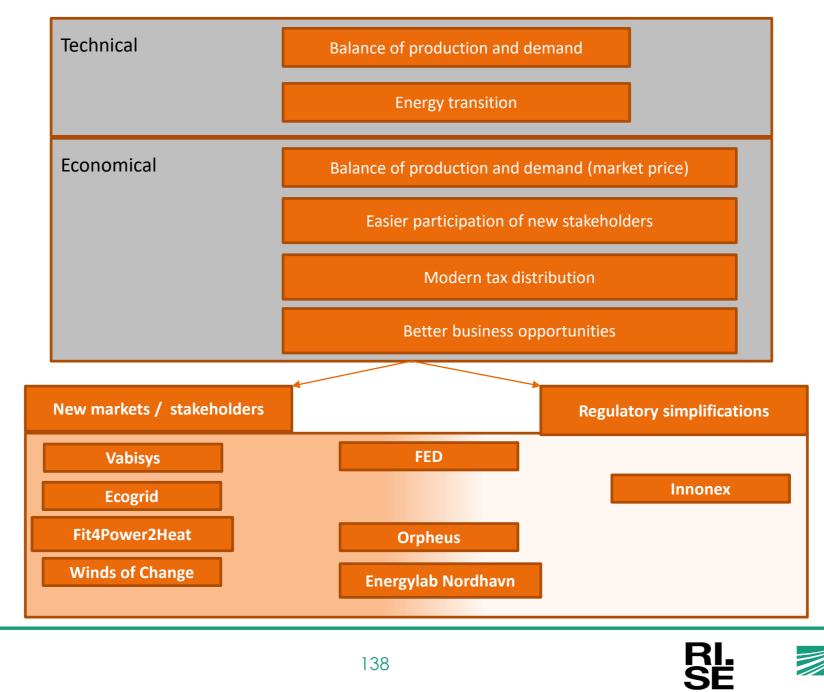
Tools to answer these questions


- Information about projects, contributed by Annex partners
- Studies on the topic

Known problems

- Partner contributions cover only a small amount of EU countries
- Additional literature research is biased via pay walls and the research focus of the own institute
- Topic could fill an annex on its own

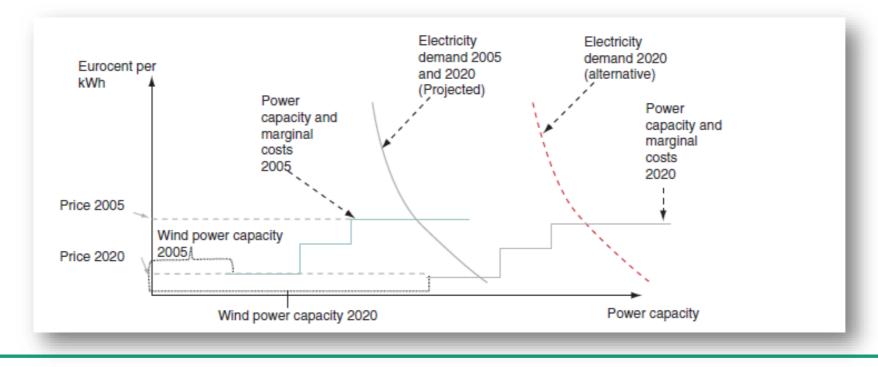
Trends & drivers I


© Fraunhofer IEE

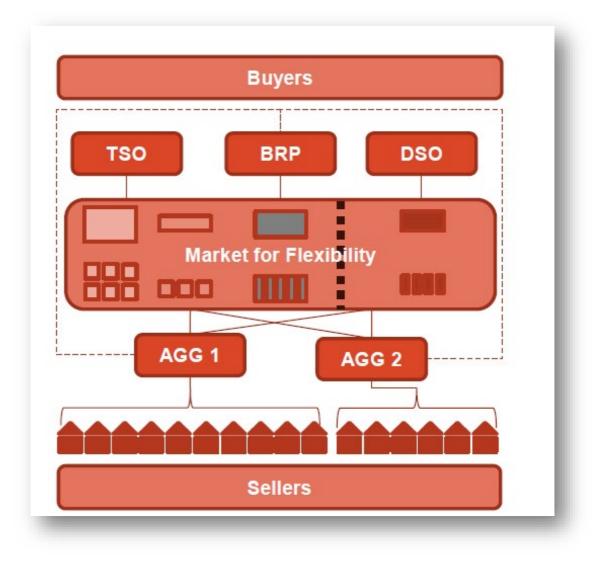
RI. SE

Fraunhofer

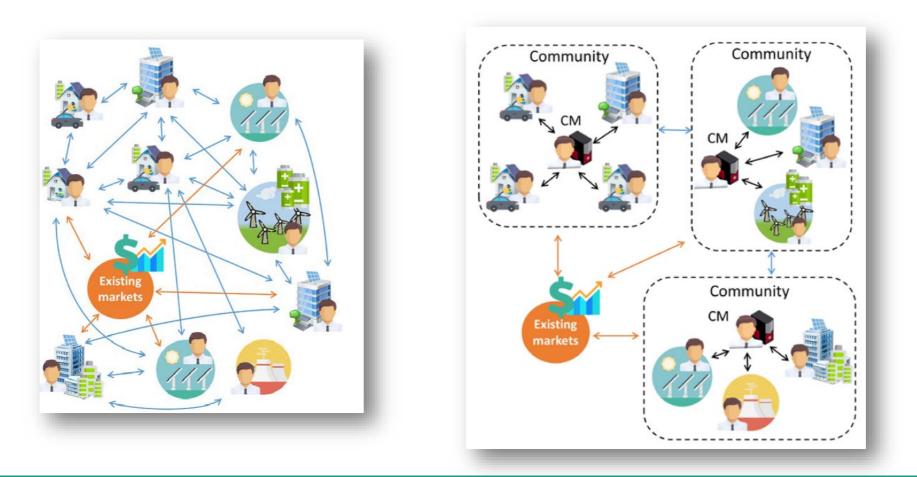
IEE


Trends & drivers II

Danish contributions


- Denmark has a large share of wind energy
- Wind parks often are not economically feasible under market conditions
- PSO subsidy phases out and is replaced by a structure with unknown efficiency
- Sector integration and its flexibility provides a solution to make RES more feasible
- Recently finished projects proposed business concepts and regulatory modifications to support business strategies for integrated energy approaches
- More or less similar examinations are done in other European countries
- Figure and statements taken from [1]

Ecogrid EU & 2.0


- New type of market in order to balance electricity production and consumption
- Follow up project finished in 2019
- Market model was tested on the isle of Bornholm
- Coupling point devices like heat pumps and heaters are controlled by market prices sent to the customers
- Aggregators are the interface between the households and buyers of flexibility
- Figure and statements taken from [2]

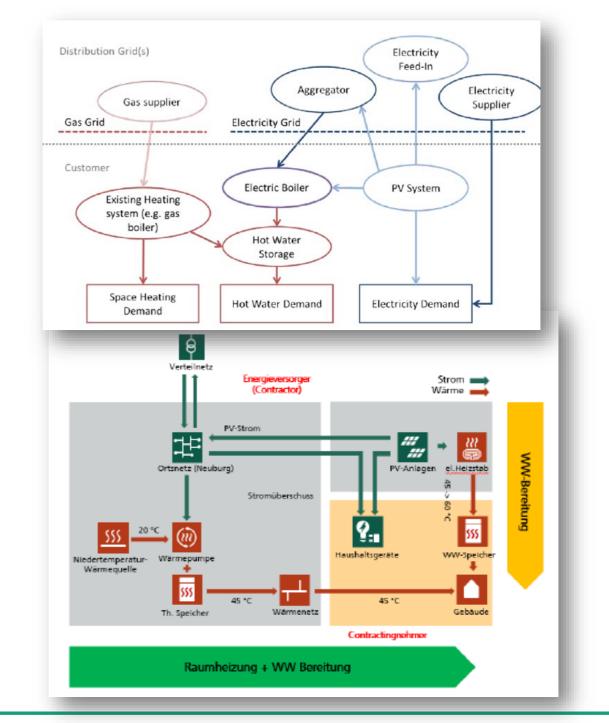
Energylab Nordhavn

- A part of Copenhagen was used to test and demonstrate future energy solutions
- Among many other project results, new market models were suggested (2019)
- Figures and statements taken from [3]

IEE

FED – Fossil free energy districts

- Energy demand and supply matching function.
- Integrating different energy carriers (heating, cooling, electricity).
- Defines prices and transactions.
- Energy market and system service market
- Hourly market settlement
- All producers and consumers represented by software agents, bidding to the market



Orpheus/Innonex

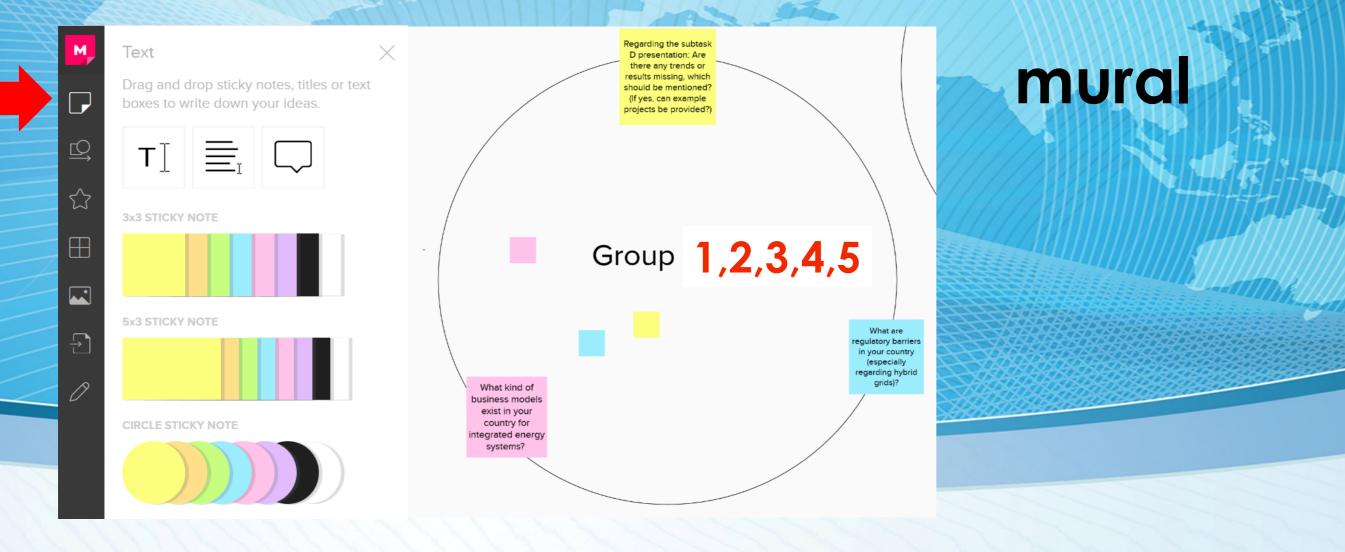
Similarities between the projects:

- Situated in Germany
- Development of operation strategies for the usage of PV excess power
- Assumptions for regulatory boundary conditions necessary in both cases
- In Innonex, the "Anlagenkopplung" was shortly discussed as solution concept
- Figures and statements taken from [4] and [5]

Outlook on energy communities

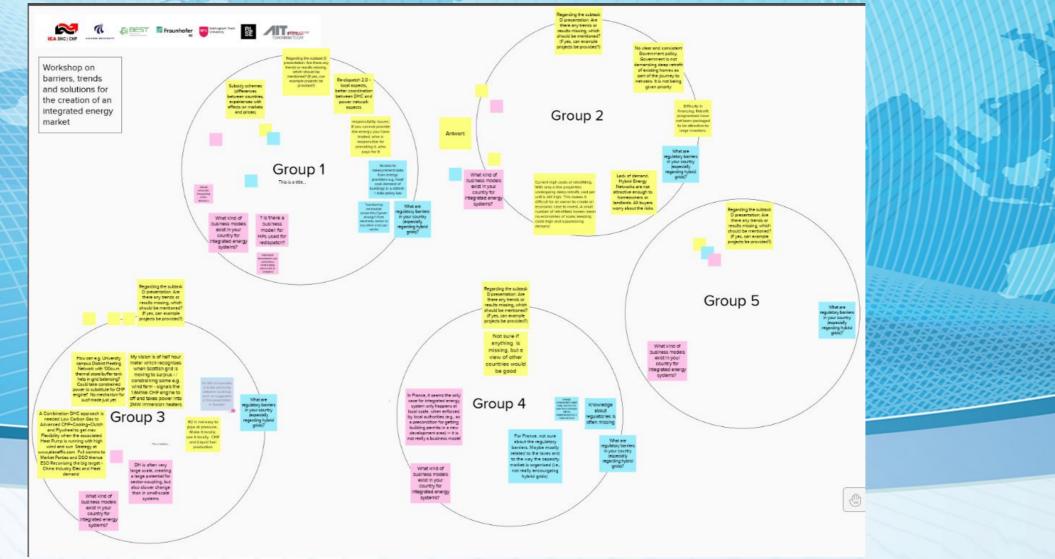
Citizen Energy
Everyone can participate
Only electricity
Not necessarily local

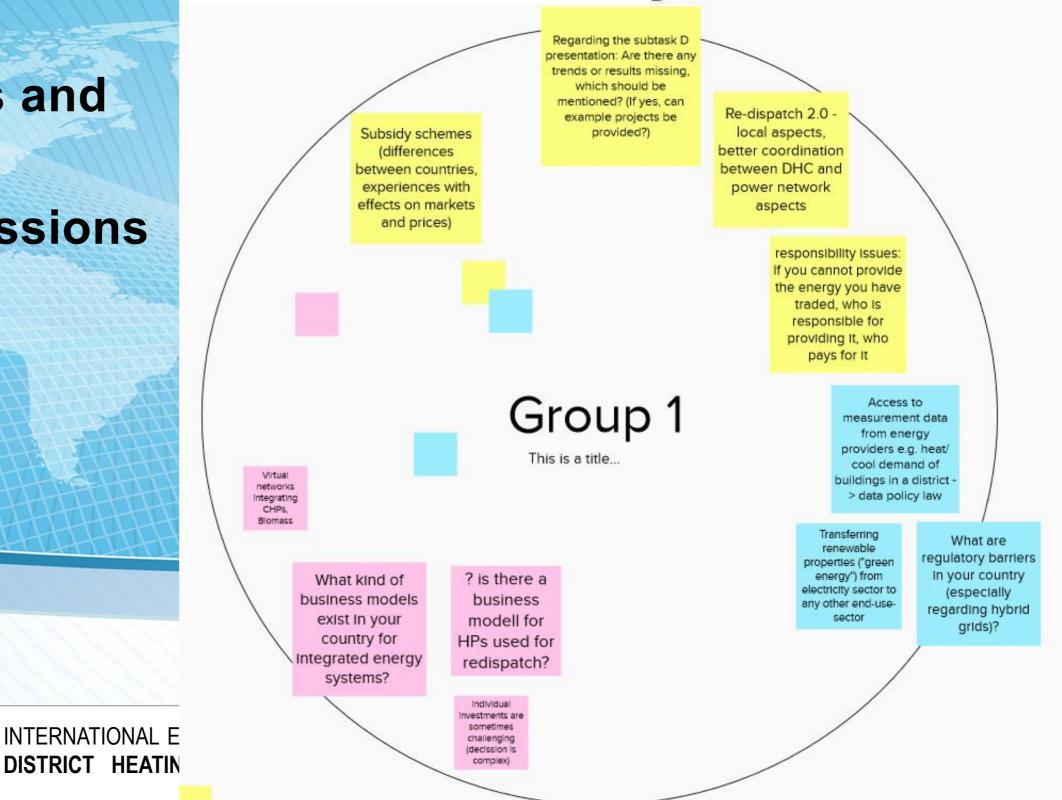
Taken from [6]



Literature

- [1] Maxwell, V.; Perling, K.; Hvelplund, F.: Electricity cost effects of expanding wind power and integrating energy sectors, International Journal of Sustainable Energy Planning and Management Vol. 06 31-38, 2015
- [2] DTU; Dansk Energi; IBM et al.: Ecogrid 2.0 Main Results and Findings, 2019
- [3] Mitridati, L.; Market-Based Coordination of Heat and Electricity Systems; DTU, 2019
- [4] Ventury GmbH et al.: Innovative Versorgung von Wärmenetzen mit niederkalorischen Abwärmequellen und Matrixsteuerung für Wärmenetzmanagement, PTJ, 2020
- [5] Schwabeneder, D.; Auer, H.; Burgholzer, B.: WP2 Technical, Economical and Social Benefits Deliverable
 2.5: Report on the validation of technical, economical and social benefits in the different demonstration sites with special consideration of robustness tests of business model design, Orpheus project, 2017
- [6] Caramizaru, A.; Uihlein, A.: Energy communities: an overview of energy and social innovation, JRC Science for Policy Report, 2020




https://app.mural.co/t/rise9766/m/rise9766/1618562067424/23b4d f8821a62a1b581262d336150167a14507d3

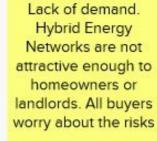
IEA DHC CHP

Regarding the subtask D presentation: Are there any trends or results missing, which should be mentioned? (If yes, can example projects be provided?)

No clear and consistent Government policy. Government is not demanding deep retrofit of existing homes as part of the journey to net-zero. It is not being given priority

> Difficulty In financing. Retrofit programmes have not been packaged to be attractive to large investors.

What are regulatory barriers In your country (especially regarding hybrid grids)?


Group 2

What kind of business models exist in your country for integrated energy systems?

Antwort:

INTERNATIC DISTRICT I Current high costs of retrofitting. With only a few properties undergoing deep retrofit, cost per unit is still high. This makes it difficult for an owner to create an economic case to invest. A small number of retrofitted homes mean no economies of scale; keeping costs high and suppressing demand

Regarding the subtask D presentation: Are there any trends or results missing, which should be mentioned? (If yes, can example projects be provided?)

How can e.g. University campus District Heating Network with 100cu.m thermal store/buffer tank help in grid balancing? Could take constrained power to substitute for CHP engine? No mechanism for such trade just yet

A Combination DHC approach is needed Low Carbon Gas to Advanced CHP+Cooling+Clutch and Flywheel to get max Flexibility when the associated Heat Pump is running with high wind and sun Strategy at www.eleceffic.com Full comms to Market Parties and DSO thence ESO Reconising the big target -China Industry Elec and Heat demand

meter which recognises when Scottish grid is moving to surplus - / constraining some e.g. wind farm - signals the 1.6MWe CHP engine to off and takes power into 2MW Immersion heaters

This is a textbox.

My vision is of half hour

Group 3

It's still not possible to trade electricity between buildings such as suggested In the presentation In Sweden

H2 is not easy to

What are regulatory barriers In your country (especially regarding hybrid grids)?

pipe at pressure. Make It locally, use It locally. CHP and Liquid fuel production

DH is often very large scale, creating a large potential for sector-coupling, but also slower change than In small-scale systems

INTERNATIONAL ENERGY A DISTRICT HEATING AND

What kind of business models exist in your country for Integrated energy systems?

IEA DHC CHP

In France, it seems the only case for integrated energy system only happens at local scale, when enforced by local authorities (e.g., as a precondition for getting building permits in a new development area) -> it is not really a business model

What kind of business models exist in your country for integrated energy systems?

INTERNATIONAL E

DISTRICT HEATIN

Group 4

Regarding the subtask D presentation: Are there any trends or results missing, which

should be mentioned? (If yes, can example projects be provided?)

Not sure if

anything is

missing, but a view of other countries would be good

> For France, not sure about the regulatory barriers. Maybe mostly related to the taxes and to the way the capacity market is organised (i.e., not really encourgaing hybrid grids)

energy mmunities might elp, but it is not will be vill be plemented on a national level

Knowledge about regulatories is often missing

> What are regulatory barriers In your country (especially regarding hybrid grids)?

note on other events

Invitation to the Webinar on IEA DHC Annex TS7: Industry-DHC Symbiosis

"A systemic approach for highly integrated industrial and thermal energy systems"

Friday, 30th April 2021, 12.30 to 15.30 (CET)

https://missioninnovationaustriaweek.at/events/industry-dhc-symbiosis-a-systemicapproach-for-highly-integrated-industrial-and-thermal-energy-systems/

https://www.nefi.at/new-energy-for-industry-2021/

NOTTINGHAM TRENT UNIVERSITY

6th - 9th September 2021

http://dhc2021.uk/

7th International Conference on

Smart Energy Systems

4th Generation District Heating, Electrification, Electrofuels and Energy Efficiency

21-22 September 2021, Copenhagen

AALBORG UNIVERSITY Denmark

https://smartenergysystems.eu/

Group photo - please smile

Thanks for your active participation!

The slides will be available at http://www.iea-dhc.org/the-

research/annexes/2017-2020-annex-ts3-draft.html

Contact: Ralf-Roman Schmidt (AIT); ralf-roman.schmidt@ait.ac.at

