Webinar Digitalization for optimizing integrated district heating systems Block III: Hybrid energy systems

This Webinar is held in the framework of two international cooperation programs: IEA DHC Annex TS3 "Hybrid Energy Networks" IEA DHC Annex TS4 "Digitalisation of District Heating and Cooling".

9. September 2020

Ralf-Roman Schmidt AIT, Austria, ralf-roman.schmidt@ait.ac.at (leader TS3)

Dietrich Schmidt, Fraunhofer IEE, Germany, dietrich.schmidt@iee.fraunhofer.de (leader TS4)

More information at

https://www.iea-dhc.org/the-research/annexes/2018-2024-annex-ts4/

http://www.iea-dhc.org/the-research/annexes/2017-2020-annex-ts3-draft.html

This webinar is recorded

The video file will be available after the webinar on the IEA DHC YouTube channel

https://www.youtube.com/channel/UCuYcqLjJi8thrUJCjzLBaow

We will have a "group photo" at the end of the webinar, so please be prepared to turn on your webcam (participation voluntarily)

Webinar Etiquette

- The microphone should be muted by default
 - They should only be switched on if you are speaking.
- Only one person speaks at a time.
 - Requests to speak are reported via chat ("rts"),
 - the moderator will ask then the speakers to speak.
 - Please state your name and institution before you speak
- Please turn off your webcam!
 - No general video transmission in order to reduce the bandwidth.
 - The camera can be used at short notice for spoken contributions.
 - We will make a "group-photo" at the end of each block
- Caution with humor and sarcasm!
 - much of the original effect between the lines can be lost

Agenda Block III - Hybrid energy system

15:00	Testing of technical connections
15:30	Introduction into the IEA DHC Annex TS3 project (Ralf-Roman Schmidt, AIT)
	Technologies for Hybridisation (Oddgeir Gudmundsson, Danfoss)
	GIS-based automated design of DH networks (Joseph Jebamalai, Comsof)
	Sector coupling between hydrogen and district heating (Hans Böhm, EI Linz)
	Interactive session and Q&A to all presenters
17:00	End of Block III

Introduction into the IEA DHC Annex TS3 project (Ralf-Roman Schmidt, AIT)

IEA DHC Annex TS3: Hybrid Energy Networks -District Heating and Cooling Networks in an Integrated Energy System Context

Introduction into international DHC Annex TS3

Ralf-Roman Schmidt AIT, Austria

IEA DHC Annex TS3: Background

- The integration of the electricity/ gas grids and heating/ cooling networks is considered as one of the key measures for decarbonizing the energy system (aka "sector coupling"). This
 - triggers important synergies, that couldn't be realised by optimizing the sectors individually.
 - is connected to several challenges, such as an increasing competition between the energy domains and a higher complexity.

IEA DHC Annex TS3: aim and structure

- Aim: to promote the opportunities and to overcome the challenges for DHC networks in an integrated energy system context. The Annex
 - provides a <u>holistic approach</u> for assessing, planning and operation,
 - considers <u>technical</u> aspects

 (system configuration, operational strategy) and <u>strategic</u> aspects
 (business model, regulatory frame).

8

IEA DHC Annex TS3: sector coupling technologies

• Electric boilers (eBs)

- transform electricity into heat (low invest. costs, high temperatures and fast gradients).
- can be economically viable at very few operating hours (compared to HPs).

Power-to-heat and cold (PtH/C) technologies (heat pumps, HPs)

- use electricity to move heat from a cool space to a warm space (high conversion efficiency)
- high dependency of the efficiency on the temperature lift between heat sink and source
- enable the use of cost-efficient and high capacity thermal storage (high load cycles possible)

Power-to-gas (PtG) processes (i.e. electrolysis)

- uses electricity to transform water into oxygen and hydrogen.
- If cost-efficient gas storages are available, cost-efficient seasonal storage is possible
- recovering the associated waste heat in DHC networks increases its efficiency

Combined heat and power (CHP) plants

- generate high temperature heat for DHC networks and electricity,
- hydrogen has a limited applicability in existing gas CHPs

IEA DHC Annex TS3: a classification approch*

Layer	Minimum	Maximum	↓ -1
Technology	Single coupling points, central controls of network and coupling points	Multiple and diverse coupling points, high operational flexibility, advanced controls, automation and analytics	^ i h fror cor → t
Organization	Minimum permissible ownership of coupling points, traditional business models and services offered	Diverse ownership, high share of prosumers, innovative business models and services offered	HEI betv and
Strategic	Central structures, integration of coupling points as a reaction to market pressure	Decentralized structures, integrated planning and design, optimized interaction and decarbonization	or ti diffe don

*This classification differs from the 4G DHC networks concept (Lund et. al=) → the main characteristic of a HEN is the integration between the different networks, and not the supply temperature or the time period where the different generations were dominating.

10

IEA DHC Annex TS3: Schedule and outcomes

Definition phase	Preparat	ion phase	Working phase					
2017 /Fall	2018 /Spring	2018 /Fall	2019 /Spring	2019 /Fall	2020 /Spring	2020 /Fall	2021 /Spring	2021 /Fall
Austria	Stockholm	Berlin with Industry WS	Stockholm shared WS with ISGAN	France – on invitation by CEA	Online TelCo and public Webinar	Online TelCo and public Webinar	Austria attached to the mission innovation week ?	Denmark – attached to the 4DH / SES conference?
Expected res	ults:	•	A review of e	existing method	s and tools	market design	and regulation	ns
• A SWOT a	nalyses of HEN	• ۱	Best practio	e guidelines ar	nd online •	workshops wit	th local industrie	es
 An assess and HEN d 	ment of suitable concepts	technologies	tutorials for p operating HE	planning, design EN	ing and 🔒	Publications a various conferent	ind presentation	ns on
 Country re scenarios 	Country reports on national energy scenarios (Denmark, Austria …)		A report on e criteria for H	A report on exergy as evaluation . criteria for HEN		a final guidebo results	ook summarizin	g the
Collection	and assessmen	it of	Developmen	t of new busine	ss models 🔒			
internatior	al case studies	•	Policy paper	s and recomme	ndation on			

Technologies for Hybridisation (Oddgeir Gudmundsson, Danfoss)

Energy system coupling technologies

Oddgeir Gudmundsson, Director, Projects

ENGINEERING TOMORROW

Role of district energy in traditional hybrid energy systems

- Traditional district energy: Important service using low quality energy
 - In sense of traditional hybrid energy systems district energy has been the dumping ground of low-quality energy

Source: ECB Annex 49: Low Exergy Systems for High Performance Buildings and Communities. Dietrich Schmidt. 2013.

Future energy systems

- The disruptive force of renewable energy

Future energy generation

Source: Vestas Wind Systems A/S

Source: Danfoss A/S

Power demand news of today and tomorrow

RECORD 24 HOURS: WIND TURBINES COVER DENMARK'S POWER DEMAND FOR 24 HOURS

PUBLISHED 23.9.2019 09.36 BY ENERGINET

"15 September 2019 is a milestone for the green transition in Denmark and the first 24-hour period ever of excess wind power production during all hours of the day and night. On Sunday, production from midnight to midnight supplied 130% of demand in Denmark."

"Early on Sunday morning between 2.00 am and 3.00 am, the wind turbines generated an impressive 60% more electricity than the Danish market demanded."

These kind of good news will be more and more common!

Technologies to capture and enable maximum usage of excess energy generation

- There are many technologies and solutions available:
 - Batteries
 - District energy systems
 - Heat pumps
 - Thermal storages
 - Load shifting enabling software
 - Power to synthetic fuels
 - Direct electricity to power heaters
 - ... and many others

"15 September 2019 is a milestone for the green transition in Denmark and the first 24-hour period ever of excess wind power production during all hours of the day and night. On Sunday, production from midnight to midnight supplied 130% of demand in Denmark."

"Early on Sunday morning between 2.00 am and 3.00 am, the wind turbines generated an impressive 60% more electricity than the Danish market demanded."

- Different technologies have different benefits and abilities to capture the excess energy being generated at a given time
- In the scope of hybrid energy systems:

[→] We are interested in the excess energy that cannot be cost efficiently stored within the same energy system it was generated

Role of district energy in future hybrid energy systems

- With decarbonization and focus on energy efficiency district energy is becoming the rising shining star and enabler of cost efficient future renewable based energy systems
 - In combination with thermal storages there is practically no limit on how much excess generated renewable power the systems can absorb
 - It can ramp capacity utilization up/down very fast → Balancing services

Future energy generation

Source: Vestas Wind Systems A/S

Source: Aarhus Vand A/S

17 | Danfoss Heating Segment – A – Projects

Oddgeir Gudmundsson - 2020

ENGINEERING TOMORROW

Source: Ramboll A/S

Which thermal supply system?

Thermal demand

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Danfoss

Different thermal supply methods have different benefits and limitations

- Communities need to do a heat planning for the future
 - During heat supply planning solutions should be evaluate on a range of metrics:
 - Economics
 - What is the lifecycle cost of the thermal supply?
 - Energy supply security
 - What if the future develops differently than we expect?
 - Flexibility
 - How flexible is the thermal supply to the expected "fuel" input?
 - Robustness
 - Is the supply system able to operate in case of unexpected beating?
 - Reliability
 - How frequently does the thermal supply fail to meet the demands?
 - Resilience
 - How quickly can the supply system recover from a disruption? (climate related, terror/cyber attacks, ...)

District energy is simple as well as complex

- Economic example
- District energy is simple: It distributes heat to buildings or extracts heat from buildings
- District energy is complex: It has many stakeholders and has market specific conditions
 - Cost of establishing district energy systems in established district energy countries is "cheap" compared to some new markets

Comparing economics of different solutions for a heat supply in the United Kingdom and Denmark

- The comparison is based on a levelized cost of heating, all main costs inclusive..
 - ... Except the development of the heat source!

United Kingdom

-11,4 MWh/y space heating and 2 MWh/y DHW demands

Denmark

- 15 MWh/y space heating and 2 MWh/y DHW

- The conclusion is that knowledge and experience is the king and queen!
 - New markets need to take advantage of the experience acquired in the established markets

Source: Paper to be published in the Smart Energy Systems conference in Aalborg, October 2020.

Different thermal supply methods have different benefits and limitations

- Communities need to do a heat planning for the future
 - During heat supply planning solutions should be evaluate on a range of metrics:
 - Economics
 - What is the lifecycle cost of the thermal supply?
 - Energy supply security
 - What if the future develops differently than we expect?
 - Flexibility
 - How flexible is the thermal supply to the expected "fuel" input?
 - Robustness
 - Is the supply system able to operate in case of unexpected beating?
 - Reliability
 - How frequently does the thermal supply fail to meet the demands?
 - Resilience
 - How quickly can the supply system recover from a disruption? (climate related, terror/cyber attacks, ...)

Cities: Low temperature district heating

Source: The District Heating System in Greater Copenhagen Area - in a free power market. Varmelast.dk

Rural areas: Winner for most metrics is:

Heat pumps

Denmark actively takes advantage of district energy to support the future green and sustainable energy system

- The municipality of Aalborg, Denmark, plans to build 1.000.000 m³ thermal storage to enable maximum energy flexibility to:
 - Support renewable power generation,
 - Balance local power plants,
 - Store industrial waste heat and
 - Surplus heat from local waste incineration.
- The thermal storage will provide the ultimate flexibility to the district heating system supplying 98% of Aalborg city building heating demand.

Aalborg får et af verdens største energilagre

Aalborg Forsyning planlægger at bygge verdens største damvarmelager i Aalborg.

Læs også: Ny leverandør af energianlæg høster små og store ordrer på stribe

- I Aalborg har vi sat os for at spille en afgørende rolle for den grønne omstilling. Vi ser frem til at kunne optimere vores udnyttelse af de vedvarende energikilder med det nye damvarmelager og give aalborggenserne et endnu grønnere produkt, siger vicedirektør for Aalborg Forsyning, Jesper Høstgaard-Jensen.

Efter nedlukningen af Nordjyllandsværket skal damvarmelagerne hjælpe med at opsamle overskudsproduktion fra vindmøller og andre vedvarende energikilder. Visualisering: Rambøll

Af <u>Maria Berg Badstue Pedersen</u> 3. september 2020 09:04

https://www.energy-

supply.dk/article/view/737536/aalborg_far_et_af_verdens_storste_energilagre?ref =newsletter&utm_medium=email&utm_source=newsletter&utm_campaign=daily

Thank you for your attention

Contact information: Dr. Oddgeir Gudmundsson Director, Projects og@danfoss.com Linked in www.linkedin.com/in/oddgeirgudmundsson

ENGINEERING TOMORROW

GIS-based automated design of DH networks (Joseph Jebamalai, Comsof)

COMSOF HEAT

GIS BASED AUTOMATED DESIGN OF DISTRICT HEATING NETWORKS

Joseph Jebamalai 🔾 🔍

comsof.com

IF Technology Creating energy

Gemeente Rotterdam

KU LEUVEN ♠ FACULTY OF ARCHITECTURE

WITH COMSOF HEAT YOU CAN HANDLE LARGER PROJECTS. FOR A PROJECT WHERE YOU WOULD NEED THREE MONTHS DESIGN TIME YOU CAN NOW DO THE SAME CALCULATIONS IN A NUMBER OF DAYS, AND WITH MORE DETAIL

WITH THE AUTOMATED GIS-ANALYSIS OF COMSOF HEAT, YOU GET QUICK AND **AFFORDABLE INSIGHTS** IN NETWORK DESIGN, CAPITAL COST AND MATERIAL NEED. THIS SOFTWARE PROVIDES CONSIDERABLE MORE RELIABLE CAPITAL COST **CALCULATIONS** THAN MANUAL DESIGNS, FOR ONLY A FRACTION OF THE INVESTED LABOR HOURS

PLANNING METHODOLOGY

COMSOF HEAT

comsof.com

Create and compare multiple scenarios

GLASGOW PROJECT INFORMATION

District Heating

- Project information
 - Glasgow city centre
 - Extraction of heat from the river with heat pumps. One or more heat pumps will be used to extract heat from the river and feed the city centre of Glasgow with energy for heating of buildings.

GIS INPUTS AND HEAT DEMAND DATA

Glasgow

comsof.com

- Digitized map of the area
 - In this case from OpenStreet Map data
 - Including street center lines and building polygons
- Heat demand data
 - Heat demand density and gross floor area density has been extracted from the public website (EU Horizon 2020 project) HOTMAPS.EU

COMSOF

MODIFIED NETWORK DESIGN

Glasgow

comsof.com

DEPLOYMENT COST CALCULATION (ASSUMPTIONS)

asgow						1	Pipe definitions -	
U U							Nominal	Cost (£,
Deceder second			al calta a				diameter	Material cos
Based on sampl	e costs per meter	pipe network in	cluding				DN25	£2,000.00
• Excavation							DN32	£2,000.00
 Supply & r 	eturn pipe						DN40	£2,000.00
• Welding &	installation costs						DN50	£2,000.00
• Refill and r	epair of top layer						DN65	£2,000.00
• Project ma	nagement overhe	ad					DN80	£2,000.00
Heat source cos	t (Heat pump)						DN100	£2,000.00
• 1,600,000	GBP / Megawatt						DN125	£2,000.00
Intermediate pu	mp cost – 60,000	GBP / Megawat	t				DN150	£2,000.00
Heat delivery u	it cost						DN200	£2,000.00
Heat exchangers							DN250	£2,000.00
Activation Type	Demand Identifie	r Lower Bound	Upper Bound		Cost		DN300	£2,000.00
Activation Type	Demand racitation	Lower Doulin	opper bound	Material	Labour	-	DN350	£2,000,00
Power		1	50	£2,500.00	£750.00	⊕ ≫	DN400	62,000.00
Power		50	100	£10,000.00	£2,000.00	⊕ %	DIN400	£2,000.00
Power		100	400	£20,000.00	£10,000.00	⇔ ⊠	DN450	£2,000.00
Power		400	1000	£75,000.00	£150,000.00	÷ %	DN500	£2,000.00
Power		1000	00	£100,000.00	£150,000.00	⇔ %	DN600	£2,000.00
	Acti	ivation Type Home	✓ Identifier				DN700	£2,000.00
Tariff							DN800	£2,000.00
Identifi	r	Fariff (£/kW)	Connection fee (£/Building)		Monthly fee (£/Home)		DN900	£2,000.00
<default></default>	£0.12	£0.00		£15.00			DN1000	£2,000.00

RESULTS – 100% UPTAKE

Glasgow

Cost breakdown

Results							
Total Cost of Project	£252,394,095.39						
Total Public trench length (m)	73,674.32						
Total Network linear heat density (MWh/m)	1.904						
Deployment Cost per Home	£188,213.34						

Cost Breakdown

[Network Cost	%
Service connection	£43,419,181.63	17%
Demand	£14,223,250.00	6%
Distribution	£108,498,847.76	43%
Energy center	£86,252,816.00	34%
Total	£252,394,095.39	100%

RESULTS WITH 33 GBP AND 15 GBP – COST OF HEAT PRODUCTION

TARIFF – 6p, 8p, 10p, 12p / kWh

33 GBP	NPV	IRR	Payback time
6р	-187,318,676	-3.96	N/A
8p	-137,283,202	-0.49	N/A
10p	-87,247,727	1.47	43
12p	-37,212,252	3	32
15 GBP	NPV	IRR	Payback time
6р	-134,327,755	-0.35	N/A
8p	-84,292,280	1.57	42
10p	-34,256,805	3.08	32
12p	15,778,670	4.4	26

	Network & energy evolution		0	1	2	3	4	5	6	7	8	9
	Year		2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Additional energy demand (sold) in year x	MWh		6521.00	15070.00	8579.00	13394,00	8071.00	15252.00	10138.00	9023.00	25283.00
	Cumulative energy demand (sold)	MWh		6521.00	21591.00	30170.00	43564.00	51635.00	66887.00	77025.00	86048.00	111331.00
	Heat Losses (distribution losses)	MWh		1396.93	3319.91	4518.77	5856.09	6848.59	8822.56	10047.86	11438.38	14269.50
	Total energy demand production (sold+distribution losses)	MWb		7917.93	24910.91	34688.77	49420.09	58483.59	75709.56	87072.86	97486.38	125600.50
	Total pipe network length in use	km		4.69	13.21	18.88	23.96	27.71	34.85	39.54	45.46	56.79
	Pipe Network length deployed in year x	km	4.69	8.52	5.67	5.07	3.75	7.14	4.70	5.92	11.33	4.73
Cash ou	1											
	Investment costs											
	Network deployment cost		£32,761,693.97	£19,557,698.12	£12,911,805.32	£32,979,197.95	£8,228,606.48	£17,280,528.51	£32,018,599.78	£12,840,812.22	£47,081,669.73	£10,329,867.59
	Cost of operation											
	Heat production cost			£261,291.63	£822,060,10	£1.144,729.40	£1.630.862.82	£1.929.958.54	£2,498,415,59	£2.873.404.35	£3.217.050.48	£4,144,816.62
	Pump energy cost			£5,762.97	£26,693,61	£44,570.92	£53,740.69	£59,798.48	£97,666.61	£101,925.29	£110.088.88	£156,779.00
	Fixed operation and maintenance cost			£245,712,70	£392.395.44	£489.233.98	£736.577.97	£798.292.51	£927.896.48	£1.168.035.98	£1,264,342.07	£1.617.454.59
	Variable operation and maintenance cost			£3,958.96	£12,455.46	£17,344.38	£24,710.04	£29,241.80	£37,854.78	£43,536.43	£48,743.19	£62,800.25
	Total cash out		E32,761,693.97	£20,074,424 39	£14,165,409.93	£34,675,076.63	£10,674,498.00	E20,097,819.84	£35,580,433.24	£17,027,714.26	£51,721,894.35	£16,311,718.05
Cash in												
	Subsidy											
	Government subsidy network investment											
	Government subsidy on energy production											
	Sales											
	Total yearly sales turnover			£521,689.36	£1,727,353.12	E2,413,621.44	£3,485,151.36	£4,130,870,24	£5,350,996.96	£6,162,067.84	£6,883,907.84	£8,906,554.80
	New connection fees											
	Monthly fees			£5,580.00	E40,140.00	£62,280.00	£77,580.00	£95,400.00	£111,960.00	£131,760.00	£157,680.00	E192,060.00
	Total cash in			£527,269.36	£1,767,493.12	£2,475,901.44	£3,562,731.36	£4,226,270.24	£5,462,956.96	£6,293,827.84	£7,041,587.84	£9,098,614.80
Cash fi												
	Total cash flow		-£32 761 693 97	-£19 547 155 03	-£12 397 916 81	-£32 199 175 19	-£7 111 766 64	-£15 871 549 60	-£30.117.476.28	-£10 733 886 42	-£44 680 306 51	-£7,213,103,25
	Cumulative Cash flow		-£32,761,693.97	-£52,308,849.00	-£64.706,765.81	-£96,905,941.00	-£104,017,707.64	-E119,889,257.24	-£150,006,733.52	-£160,740,619.94	-£205,420,926.44	-£212,634,029.69
		-	in the second									
	1	4PV	-E137,283,201.79									
		RR	-0.49%									
	Payback t	me	NA									

Network & energy evolution		0	1	2	3	4	5	6	7	8	9
Year		2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Additional energy demand (sold) in year x	MWb		6521.00	15070.00	8579.00	13394.00	8071.00	15252.00	10138.00	9023.00	25283.00
Cumulative energy demand (sold)	MWh		6521.00	21591.00	30170.00	43564.00	51635.00	66887.00	77025.00	86048.00	111331.00
Heat Losses (distribution losses)	MWb		1396.93	3319.91	4518.77	5856.09	6848.59	8822.56	10047.86	11438.38	14269.50
Total energy demand production (sold+distribution losses)	MWh		7917.93	24910.91	34688.77	49420.09	58483.59	75709.56	87072.86	97486.38	125600.50
Total pipe network length in use	km		4.69	13.21	18.88	23,96	27.71	34.85	39.54	45.46	56.79
Pipe Network length deployed in year x	km	4.69	8.52	5.67	5.07	3.75	7.14	4.70	5.92	11.33	4.73
Cash out											
Investment costs											
Network deployment cost		£32,761,693.97	£19,557,698.12	£12,911,805.32	£32,979,197.95	£8,228,606.48	£17,280,528.51	£32,018,599.78	E12,840,812.22	£47,081,669.73	£10,329,867.55
Cost of operation											
Heat production cost			£261,291.63	£822,060.10	£1,144,729.40	£1,630,862.82	£1,929,958.54	£2,498,415.59	£2,873,404.35	£3,217,050.48	£4,144,816.62
Pump energy cost			£5,762.97	£26,693.61	£44,570.92	£53,740.69	£59,798.48	£97,666.61	£101,925.29	£110,088.88	£156,779.00
Fixed operation and maintenance cost			E245,712.70	£392,395.44	£489,233.98	£736,577,97	£798,292.51	£927,896.48	£1,168,035.98	£1,264,342.07	£1,617,454.55
Variable operation and maintenance cost			£3,958.96	E12,455.46	£17,344.38	£24,710.04	£29,241.80	£37,854.78	£43,536.43	E48,743.19	£62,800.25
Total cash out		E32,761,693.97	E20,074,424.39	£14,165,409.93	£34,675,076.63	£10,674,498.00	E20,097,819.84	£35,580,433.24	E17,027,714.26	E51,721,894.35	£16,311,718.05
Cash in											
Subsidy											
Government subsidy network investment											
Government subsidy on energy production											
Sales											
Total yearly sales turnover			£652,111.70	E2,159,191.40	E3,017,026.80	£4,356,439.20	£5,163,587.80	£6,688,746.20	£7,702,584.80	£8,604,884.80	£11,133,193.50
New connection fees											
Monthly fees			£5,580.00	£40,140.00	£62,280.00	£77,580 00	£95,400.00	E111,960.00	£131,760.00	£157,680.00	£192,060.00
Total cash in			£657,691.70	£2,199,331.40	£3,079,306.80	£4,434,019.20	£5,258,987.80	£6,800,706.20	£7,834,344 80	E8,762,564.80	£11,325,253.50
Cash flow											
Total cash flow		-£32,761,693,97	-£19.416.732.69	-£11,966.078.53	-£31,595,769,83	-£6.240.478.80	-£14.838.832.04	-£28.779.727.04	-£9.193.369.46	-£42,959,329,55	-£4,986,464,55
Cumulative Cash flow		-£32,761,693.97	-£52,178,426.66	-£64.144.505.19	-£95,740,275.02	-£101,980,753.82	-£116,819,585.86	-£145,599,312.90	-£154,792,682.36	-£197,752,011.90	-£202,738,476.45
N	PV	-£87,247,726.70									
	RR	1.47%									
Payback b	me	43									

comsof.com

CASE STUDY - INPUTS

Selected 2328 buildings and heat source – Kortrijk, Belgium

BUILDING INPUTS:

- Open source street level gas consumption data
 - Mapped street level to building level using building area ratio
- Building types are categorized as
 - o Residential
 - Commercial
 - Industrial
- Load factors → Estimation of peak demand

HEAT SOURCE:

- IMOG, waste incineration plant
 - 2 km from the network
 - Incinerate 65,000 tons of municipal waste per year
- Heat pumps \rightarrow 3 units
- Gas boiler
- Combined heat and power (CHP) plant

Case study area

CASE STUDY - INPUTS

Selected 2328 buildings and heat source – Kortrijk, Belgium

HEAT SOURCE ATTRIBUTES:

Source type	Capacity (MW)	Investment cost (€/MW)	Energy production cost (€/MWh)	CO2 released (t per MWh)
Waste incineration	13	-	6	0.6
Heat pump	6	600,000	50	0.075
СНР	2	-	14	0.42
Gas boiler	4	150,000	42	0.5

comsof.com

CASE STUDY - NETWORK

2 - layer network and intermediate results

2 – LAYER NETWORK:

- Transport network \rightarrow Source to substations
 - Multiple source design method
 - 80/50 temperature level
- Distribution network \rightarrow Substation to buildings
 - Branched network design method
 - 70/40 temperature level
- Network sizing
- Cost estimation

INTERMEDIATE RESULTS:

- Clusters with substation locations
- Simultaneous demand of each substation

comsof.com

SCENARIOS – OPTIMAL SOLUTION

3 sources selected

DESIGN SCENARIO – SOURCE SELECTION

Supply is greater than demand

COMSOF

SCENARIOS

Source selection

SCENARIOS

Source selection

CONTACT

- Kurt Marlein
 - Product Manager
 - kurt.marlein@comsof.com
 - o +32 9 275 31 00
 - o +32 473 53 83 45
- Joseph Jebamalai
 - Innovation Engineer
 - joseph.jebamalai@comsof.com
 - +32 9 275 31 00
- www.comsof.com
- sales@comsof.com

Sector coupling between hydrogen and district heating (Hans Böhm, El Linz)

Selected aspects of sector coupling between hydrogen and district heating DI Hans Böhm

IEA DHC TS3 – Industry workshop: digitalization and hybrid energy

Altenberger Straße 69, HF-Gebäude, 3. Stock , A-4040 Linz | Tel.:+43-732 / 24 68 - 5665 email: office@energieinstitut-linz.at | www.energieinstitut-linz.at

ENERGIEINSTITUT
 an der Johannes Kepler Universität Linz

Long-term vision: Renewable hydrogen / gases / hydrocarbons supply significant parts of future energy systems

1 smart city, 2 process energy in industry, 3 wind power plant, 4 energy-autonomous agriculture, 5 green public transport, 6 communal storage facilities, 7 multi floor residential buildings, 8 gas grid, 9 power grid, 10 green intralogistic, 11 biogas plant, 12 sewage plant, 13 gas-fired power plant, 14 power-to-gas plant (electrolyser, methanation), 15 hydropower plant, 16 hydrogen and gas filling station, 17 energy-autonomous single-family house, 18 energy-autonomous remote station, 19 PV power plant, 20 gas storage facility

52

Integrating hydrogen and power-to-gas in district heating

Electrolysis

- Electrolysers are the main technology to bring hydrogen and its derivatives into the future energy system by producing hydrogen from renewable electricity.
- Can be categorised in "low-temperature" and "high-temperature" electrolysis.
- Heat supply or demand is depending on the type and mode of operation.

Low-temperature electrolysis: operated above thermoneutral voltage \rightarrow requires external cooling

High-temperature electrolysis: can also be operated below thermoneutral voltage \rightarrow requires external heat input

Source: Buttler, A., Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews 2018;82:2440–54.

Integrating hydrogen and power-to-gas in district heating

Electrolysis – SoA and technology options

Electrolysis cell type	Operating temperature	Typical stack size	Electric efficiency (LHV)	Advantages	Disadvantages
Polymer Electrolyte Membrane (PEMEC)	50(20)-80°C	<1 MW	50-60%	 Short start-up (cold: minutes, warm: seconds) High load flexibility (0-100%) 	 Pt-grade catalysts Sensitivity to impurities
Alkaline (AEC)	60(30)-90°C	<5 MW	50-60%	High lifetimeLow efficiency degradation	Electrolyte management
Solid Oxide (SOEC)	500-900°C	<100 kW	75-90%	High efficiencyHigh load flexibilityReversibility	 High degradation / short lifetimes (pre-commercial) Long start-up (cold start)

- LT-electrolysers encourage a usage in spatially close applications and/or where temperature level is of secondary importance (e.g. swimming pools or hospitals)
- Heat intense industries are expected to use HT-electrolysis with thermal integration for on-site hydrogen production for better efficiency → this could lead to increased heat demands in future district heating grids.
- Downstream synthesis processes can provide additional waste heat at elevated temperatures for further utilization (e.g. methanation @ 200-300°C)

Source: Energieinstitut an der JKU Linz

54

Integrating hydrogen and power-to-gas in district heating

Fuel Cells – SoA and technology options

Fuel cell type	Operating temperature	Typical stack size	Electric efficiency (LHV)	Applications	Advantages	Challenges
Polymer Electrolyte Membrane (PEMFC)	<120°C	<100 kW	60% (direct H ₂)	 Backup power Portable power Distributed generation Transportation 	 Reduced corrosion Low temperature Quick start-up and load following 	Expensive catalystsSensitive to fuel impurities
Alkaline (AFC)	<100°C	<100 kW	60%	MilitarySpaceBackup powerTransportation	 Lower cost components Low temperature Quick start-up 	 Sensitive to CO₂ Electrolyte management / conductivity
Phosphoric Acid (PAFC)	150–200°C	<500 kW	40%	Distributed generation	 Suitable for CHP Increased tolerance to fuel impurities 	Expensive catalystsLong start-up timeSulfur sensitivity
Molten Carbonate (MCFC)	600–700°C	<3 MW	50%	Electric utilityDistributed generation	High efficiencyFuel flexibilitySuitable for CHP	 High temperature corrosion and lifetime Long start-up time Low power density
Solid Oxide (SOFC)	500–1,000°C	<2 MW	60%	Auxiliary powerElectric utilityDistributed generation	 High efficiency Fuel flexibility Solid electrolyte Suitable for CHP 	High temperature corrosion and lifetimeLong start-up time

Source: based on Lindorfer, J., et al. (2020). Fuel Cells: Energy Conversion Technology. In: Future Energy (Third Edition), Letcher, T. (Ed.), Elsevier, 2020

Gas infrastructure is still required in a sustainable energy system from an Austrian perspective

- National renewable electricity potentials do not cover the Austrian consumption

 neither profile- nor balance-related.
- The trade-off of electricity demand and supply primarily requires short- (days) and long-term (seasonal) storage capacities.
- → For seasonal storage hydrogen (and derivatives) are essential
- In the future sustainable energy system today's gas infrastructure still supplies ...
 - Renewable gas CHP (as backup)
 Industrial consumers (energy carrier & feedstock)
 Other consumers (e.g. heavy-duty transport, etc.)

National potentials for renewable power are insufficient to cover demands. Thus, the focus has to be on primary energy efficiency, which requires the **operation of CHP plants**.

Source: Energieinstitut an der JKU Linz

Integration of hydrogen in district heating

using the example of CHP

- 1. Conv. CHP connected to gas, heat and power grid
- Production of "green" H₂ for industry, mobility and energy applications

Temporal separation of gas/hydrogen production and usage (seasonal shift)!

Source: Energieinstitut an der JKU Linz

Integration of hydrogen in district heating

using the example of CHP

- 1. Conv. CHP connected to gas, heat and power grid
- Production of "green" H₂ for industry, mobility and energy applications
- Utilization of H₂ and CO₂ for production of renewable energy carriers → carbon cycle economy

Temporal separation of gas/hydrogen production and usage (seasonal shift)!

Source: Energieinstitut an der JKU Linz

Integration of hydrogen in district heating

using the example of CHP

 Optimized waste heat utilization of power-to-X processes and integration in heating grids

Temporal separation of gas/hydrogen production and usage (seasonal shift)!

Source: Energieinstitut an der JKU Linz

Integration of hydrogen in district heating

using the example of CHP

- Optimized waste heat utilization of power-to-X processes and integration in heating grids
- Substitution of conventional
 CHP by large-scale fuel cells
 → direct usage of H₂

Temporal separation of gas/hydrogen production and usage (seasonal shift)!

Source: Energieinstitut an der JKU Linz

Integration of hydrogen in district heating

using the example of CHP

- Optimized waste heat utilization of power-to-X processes and integration in heating grids
- Substitution of conventional
 CHP by large-scale fuel cells
 → direct usage of H₂
- Implementing reversible fuel cells (rSOFC) → optimizing operating hours and plant costs

Temporal separation of gas/hydrogen production and usage (seasonal shift)!

Source: Energieinstitut an der JKU Linz

Options for direct integration of power-to-gas applications in heating grids

- 1. Alkaline and PEM electrolysers provide a waste heat potential of about 10-25% of their nominal capacity at temperatures of 60-80 °C.
- Downstream synthesis processes provide additional sources of heat at elevated temperatures, e.g. catalytic methanation @ 250-300 °C in the range of 15% of the processed gas.
- 3. Operating temperatures of **HT-electrolysis are in the range of 500-1,000 °C** and can be a **heat source or drain** depending on the mode of operation.
- 4. Fuel cells can be (and are already) used as micro-CHP for decentralized electricity and heat supply. Future large-scale implementations could substitute conventional CHP plants in H₂-/SNG-based energy systems.

DI Hans Böhm

Researcher – Energy Technologies

Energieinstitut an der Johannes Kepler Universität Linz

Altenberger Straße 69 4040 Linz, AUSTRIA Tel: +43 723 2468 5665 e-mail: boehm@energieinstitut-linz.at

Thanks for your attention!

Q&A to all presenters

Group photo

+ many others without webcam (in total about 50 participants)

Summary and next steps

 We will make the recording of the webinar available on the IEA DHC YouTube channel <u>https://www.youtube.com/channel/UCuYcqLjJi8thrUJCjzLBaow</u> and send out the presentation slides

- If you want to join the IEA DHC Annex TS3 or TS4, please contact
 - Ralf-Roman Schmidt, <u>ralf-roman.schmidt@ait.ac.at</u> (leader TS3)
 - Dietrich Schmidt, <u>dietrich.schmidt@iee.fraunhofer.de</u> (leader TS4)
 - AND: contact your national IEA DHC representative for funding opportunities <u>https://www.iea-dhc.org/home/</u>

Thank you for your attention!

Webinar Digitalization for optimizing integrated district heating systems - Block III

- 9. September 2020
- Ralf-Roman Schmidt AIT, Austria, ralf-roman.schmidt@ait.ac.at (leader TS3)

Dietrich Schmidt, Fraunhofer IEE, Germany, dietrich.schmidt@iee.fraunhofer.de (leader TS4)

More information at

https://www.iea-dhc.org/the-research/annexes/2018-2024-annex-ts4/

http://www.iea-dhc.org/the-research/annexes/2017-2020-annex-ts3-draft.html

IEE

