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Seasonal Storage and Renewable Seasonal Storage and Renewable 
Energy in District Heating SystemsEnergy in District Heating Systems

• IEA Research Categories:

#6 District Energy in Future Buildings
#5 Renewable Energy Sources for 

District Energy Systems
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OverviewOverview
• Canadian solar seasonal storage project
• Characteristics of in-ground borehole 

storage system
• Project description

- System-level analysis
- Simulations and optimization
- Distributed solar energy and storage
- Experimental work in low energy buildings
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Simplified Okotoks Schematic

Okotoks Seasonal Solar System (Drake Landing Solar Community)
Source: Natural Resources Canada, CANMET



Source: Natural Resources Canada, CANMET

Okotoks Okotoks 
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Source: Natural Resources Canada, CANMET

OkotoksOkotoks
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Okotoks Solar System Costs (CDN)Okotoks Solar System Costs (CDN)
• Energy Centre (incl. short term tanks)       $600K
• Seasonal Storage Borehole Field              $620K
• Heating & Solar Collection Loops              $1025K
• Solar Collector Supply $710K
• Solar Collector Installation $430K

• Solar Energy Life Cycle Cost: $0.13/kWh (40 yr)
$0.17/kWh (25 yr) 
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Okotoks Overall System CostsOkotoks Overall System Costs

• 52 houses with peak load 11 KW
• Total cost including DH System = 

$3,385K CDN or 2,227K Euros
• Cost per house = $65,100 CDN or 

42,800 Euros
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The Okotoks Energy CentreThe Okotoks Energy Centre

Source: Natural Resources Canada, CANMET
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Simplified Okotoks Schematic

Okotoks Seasonal Solar System (Drake Landing Solar Community)
Source: Natural Resources Canada, CANMET



Borehole Thermal Energy StorageBorehole Thermal Energy Storage

Source: Natural Resources Canada, CANMET 11



Okotoks Construction Photos Okotoks Construction Photos 

Source: Natural Resources Canada, CANMET 12
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Characteristics of Seasonal StorageCharacteristics of Seasonal Storage
• Combines fast response sections with 

very slow ones
• Limited heat transfer capacity, 400 KW at 

Okotoks (Peak solar is 1.6MW)
• Cost of Okotoks buffer water storage is 

approximately $300,000 USD
• Distributed thermal storage of low energy 

buildings can replace the large water 
storage 
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Simulations of Borehole  Simulations of Borehole  
Outer RingOuter Ring

• “Coarse finite element” approach, using 
SIMULINK ™, enabling complete DH 
system simulation at high speed

• 24 cells around the outer ring
• 8 hour temperature pulse, 30-40 deg C
• Start at ground temperature = 10 deg C
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Borehole Reference ConfigurationBorehole Reference Configuration
Optional series or 

individual connections
Insulation

HIGH TEMPERATURE 
REGION ( > 60 – 80 ⁰

 
C)

International Energy Agency/Gagest Inc



Proposed Proposed ““MiniMini--UtilityUtility”” System  System  
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With Two-Stage Borehole Storage To 
Accommodate Peak Solar Input 

Temperatures

International Energy Agency/Gagest Inc



Interface Between Large DH Utility and StandInterface Between Large DH Utility and Stand-- 
Alone Alone ““MiniMini--UtilityUtility”” with Seasonal Storage with Seasonal Storage 

and Solar/Biomass Energyand Solar/Biomass Energy
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LowLow--Energy Buildings Can Avoid Energy Buildings Can Avoid 
Peak Loads on DH Systems Peak Loads on DH Systems 

– Future buildings will have low heat loss factor
– Utilize thermal energy storage enabling load 

shedding and off-peak charging of storage
– Independent production of thermal energy
– Sophisticated control systems
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Interface Low Interface Low -- Energy Energy 
Buildings to DH SystemBuildings to DH System

• Dumont House:
– Heat loss factor 109 watts per °C, 5.5 KW at -30°
– Passive gain: 11.6 square meters south windows
– Active solar: 15.6 square meters of collectors
– 3000 liters water storage



25
25



2626



27

-2.5

-2

-1.5

-1

-0.5

0
0 10 20 30 40 50 60 70

TE
M

P
E

R
AT

U
R

E
 L

O
S

S
  (

D
E

G
. C

)

TIME  (MINUTES)

COOLDOWN TEST NORMALIZED TO (Tin - Tout) = 40 DEG. C

DUMONT HOUSE
ONNO HOUSE

International Energy Agency/Gagest Inc



District Heating and Cooling, including the integration of CHP
INTERNATIONAL ENERGY AGENCY

© 2008 IEA-DHC 28

DUMONT HOUSE COOLDOWN DERIVATIVE, FILTERED
NORMALIZED TO (Tin - Tout) = 40 DEG. C
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DUMONT HOUSE HEAT CAPACITY, HEATING AND COOLING
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ConclusionsConclusions
• Seasonal storage shows promise but 

cost too high – need to reduce  losses; 
concentrate on lowering operating temp

• Utilities have concerns that connecting 
low-energy buildings to DH system will 
have insufficient payback 

• Future buildings will often have 
distributed solar and thermal storage 
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Applications to European Applications to European 
Coastal ClimateCoastal Climate

• Since solar gain will be lower than 
Calgary in January, February minimizing 
losses in seasonal storage is important 

• Relative magnitude of diffuse radiation is 
larger – collectors should have good 
response to this input

• Simulations will be done with this climate
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Net Benefits to the Utility of Low Net Benefits to the Utility of Low 
Energy Buildings Energy Buildings 

• Load shedding
• Distributed storage can buffer borehole and 

enable off-peak energy accumulation
• Distributed generation of renewable energy 

gives direct supply to nearby buildings plus 
surplus into seasonal storage
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IEA Project ActivityIEA Project Activity
• Model optimized borehole configuration
• Model complete DH system with seasonal 

storage
• Incorporate automatic weather prediction 

software for optimized control
• Experimental work

– Interface Dumont house to simulated DH system
– Develop more efficient heating system matched to 

low energy buildings
33
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