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1.1

Preface
The IEA-Project ""District Heating and Cooling"

The International Energy Agency (IEA) was established in order to strengthen the
cooperation between member countries. As one element of the International Energy
Program, the participating countries undertake cooperative activities in energy research,
development and demonstration.

District Heating and Cooling is seen by the IEA as a means by which countries may
reduce their dependence on oil and improve their energy efficiency. It involves the
increased use of indigeneous or abundant fuels, the utilisation of waste energy and
combined heat and power production.

IEA’s "Programme of Research, Development and Demonstration on District Heating"
was established at the end of 1983. Ten countries participated in the programme.

In May 1993 decisions were taken concerning a Annex IV, in which the participants will
continue their cooperation for another three-year period. Items of the fourth phase are:

(1) CHP/Cooling Guidelines

2) Advanced Transmission Fluids

3) Heat Distribution Technology

(G)) Network Supervision

%) Efficient Subutilitys & Installations
(6) Manual on District Heating Piping

@) Development of long term cooperation

General information about the IEA District Heating Project can be obtained from:

IEA Secretariat Phone: +33-1-45249975
Mrs. Gudrun Maass Fax: +33-1-45249988
2 Rue Andri-Pascal

F - 75775 Paris Cedex 16, France

or
NOVEM

Netherlands Agency for Energy and the Environment

Mr. F. van Bussel Phone: +31-46-595332
P.O.Box 17 Fax: +31-46-528260

NL - 6130 AA Sittard, The Netherlands

NOVEM, The Netherlands is the Operating Agent for the programme since 1987. The
Operating Agent operates the task under its supervision and responsibility.
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The handbook: Planning and Building of District Heating Networks

District heating networks fulfill an important service role and construction of these calls
for large-scale investment. Consequently, network systems must meet special criteria in
terms of network operating life, reliability of supply and cost-effectiveness. A body of
specialized knowledge has been assembled from the development of numerous heat and
distribution services in northern and central Europe, some of them large, and this will be
passed on here. Heating distribution systems of considerable size have also been built in
Eastern Europe, albeit under different economic circumstances.

This handbook is intended for the trained engineer and contains information on
particular aspects of building heat distribution lines. It is not a textbook for teaching the
basics to engineers. It discusses only the fundamental aspects involved in design and
construction but does not touch on specialized products or on specific construction
alternatives.

This publication has been put together with the collaboration of experts from nearly ten
countries. It is written in everyday engineering terms as well as those of routine
planning for district heating systems. The text details many important situations and
difficulties. This is not intended to intimidate the reader with the numerous
interrelationships and problems but rather to make those less experienced aware of the
hidden pitfalls.

Most of the manuscript was written in Germany. Correspondingly, the majority of the
illustrated material has also been drawn from German sources. It should be said in this
regard that cost considerations alone restricted the use of illustrated material from
outside Germany. Scandinavian engineers have had no less success in developing the
heat distribution systems in their own countries.

This work looks at the problems primarily from the standpoint of the engineer. The
business background is discussed to the extent necessary for proper understanding. Even
technically discussion is confined to the planning and construction of pipelines for hot
water and not for steam. The issues involved in thermal generation or customer’s service
installations are touched on only as they affect network planning.

The present handbook is intended to provide engineers with stimulus for their everyday
planning work. It will have achieved its purpose if it saves them from having to acquire
some costly knowledge or other on their own.



As far as the organization of the contents is concerned, the handbook discusses the basic
aspects required for network planning in the initial sections (up to and including Section
5). In Section 6 the reader is given a look at the technical and economic parameters
which most affect network engineering. This is intended to provide a sufficient
overview from which to recognize the most troublesome factors in the welter of
interrelated aspects.

Section 7 deals with the process of network planning itself. The first general part
discusses the various stages in the engineering aspects of planning while also describing
the business situation and its implications on construction costs. Other technical
discussions involve a detailed look at system hydraulics as well as issues relating to
structural engineering, thermal insulation and even operating costs.

Lastly, Section 8 discusses pipeline engineering focussing on the laying of plastic-
sheathed pipe. Other pipelaying techniques are discussed only as an adjunct. There is
also discussion of special components involved in district heating lines such as

compensators, inspection chambers, thermal insulation etc.

The case study in Section 9 is designed to illustrate the preceding theoretical sections.
The handbook concludes with the requisite bibliographical data and editorial
information.
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General

District heating networks provide private and public consumers with heat from a central
generating facility. Businesses and industrial concerns may also be supplied at
appropriate temperature levels. Heat is mostly produced in heat-and-power utilitys with
their effective fuel utilization. Waste heat from the incineration of garbage and industrial
plants is also supplied to district heating networks. The heat component needed to meet
peak-load requirements is obtained from heating plants.

A major problem for heat distribution services is the need to keep the entire system
available for maximum heat output which is only required on very cold winter days. The
rest of the time only a much lower output of heat is required, down to as little as roughly
one-tenth during the summer.

The Organization of a District Heating System

A district heating system includes facilities for heat generation, heat distribution and
customer service (cf. Fig. 3.1-1). Accordingly the present text deals with all parts of the
heat distribution system found between the heat-and-power utility and the heating utility
on the one hand and the customer service installations on the other. Hence, in the case of
generating facilities located outside the area being served, heat distribution involves the
transporting of heat to the utilities network, transfer from the transporting system to the
distribution system, all trunk lines, utilities lines and the customer service lines. Heat
distribution also involves pressure control, provision for expansion and water
circulation, even when these may be contained wholly or in part in the heat-and-power
utility or the heating utility.
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Today water is used as the heat carrier in district heating networks. In addition to
technical operating advantages, water distribution systems as opposed to steam are able
to operate with heating-water temperatures below 100°C which is more economical in
energy terms. This handbook confines itself to description of modern systems and hence
to heat distribution using water.

The large-scale distribution of heat had its beginnings around the turn of the century.
Today, for energy-policy and environmental reasons, increased use of heat distribution
systems is of great public interest. Due to the variety of ways they evolve, i.e. the time at
which they are built, the geographic circumstances and the available thermal generating
facilities, individual distribution networks may differ widely in their design. They differ
in peak temperatures, operating techniques, operating pressures, customer servicing,
hydraulic systems and in the engineering of the pipelines involved. There are heat
distribution systems at every output level. The largest European facilities (Eastern
Europe excluded) produce heat outputs of as much as 2000 MW and serve several
hundred thousand households.
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The Distribution of Thermal Energy

Heat distribution networks are built to connect residences with central heating systems
to common thermal generating facilities. The supply and return temperatures
encountered in domestic installations are usually 90°C and 70°C (or 80/60°C) for older
systems and tend towards 70/40°C (or 60/40°C) for new systems. On the pressure side,
domestic installations are designed up to 6 bar.

New district heating networks are set up to operate with hot water and are designed as
two-line systems incorporating separate supply and return lines. District heating
networks also include auxiliary systems such as pumping utilitys, inspection chamber
structures, pipe bridges and sag pipes.

Should the thermal generating facility not be located in the area where the heat is used,
lengthy transmission lines are necessary.
These have a significant impact on the economic viability of a district heating system.

Customer systems are either serviced directly to allow hot water to flow directly through
the domestic installation or indirectly via heatexchangers. In the case of direct service
especially it is important to assure that the rated pressure in the residential system is not
exceeded under any circumstances. Hot water is provided via heat exchanger. Fig. 3.2-1

shows examples of service installation layouts for direct and indirect customer service.

Service installations may involve considerable outlay in metering and regulating
systems. These costs assume greater significance the smaller the consumption of the
consumer. If distribution networks are operated at lower temperatures, the consumer
utility can be reduced to the consumption meter, shut-off valve and sludge trap. This can
produce considerable savings.
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Demand for Thermal Energy

The demand for thermal energy in a given service area consists of the energy demand
for indoor heating, supply of hot water and industrial heating. The demand for indoor
heat is determined by specific calculation for the subject being serviced. In practice,
theoretical values for heat requirements are set liberally to assure that supply shortfalls
do not occur.

The heat needed to provide hot water may be determined from the volume of hot water
called for. It amounts to about 20% of the requirement for indoor heating. In the case of
small-scale consumers the energy requirement for provision of hot water may
considerably exceed that for indoor heating. In this case the distribution network
situation may require provision of hot water in conjunction with storage. During

summer operation the warming of water assures minimal consumption of heat.

Heat for industrial use is ordered under varying circumstances depending on the
situation. Industrial heat is ordered selectively in the serviced area and often with only
slight seasonal variations in energy requirement. Frequently it calls for separate
pipelines.

The optimum output needed to supply a given area is considerably less than the
theoretical sum of the energy requirements of all consumers. The discrepancy is
accounted for by the fact that the various consumers do not require their peak energy at
the same time and by the above mentioned departures from real energy requirements.
To mathematically calculate the deviation a number of parameters and simplifications
are used.

1. Load Condition
Load condition v is the quotient of peak heat output capacity and thermal energy

requirement. It is calculated for individual customers, customer groups and for the entire
area being serviced.

v=P_ /P
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Hence load condition is influenced by all uncertainties contained in the calculation of
heat requirement. Load condition encompasses the reduced demand for peak output as a
result of non-coincident consumption.

For the European countries, for example, the average value for load condition is v =
0.55. Fig. 4-1 shows the data for load condition for a major district heating network and
an operating year in which optimum heat output was utilized.

2. Coincidence Factor
Coincidence factor is the quotient of simultaneous peak heat demand by a number of

customers and the sum of the usually non-coincident individual peak demands for heat
by these customers in the same period of time.

g = Pmax/ Z Pmnxi
For service lines the coincidence factor can reach the value of 1; for all other lines it is
below 1 and often near 0.5.
3. Alleviation Factor
To energy demand, which is an important figure in subscribing to a district heating
network, there is applied an alleviation factor, e.g. 0.8.
4. Indoor Heating and Hot Water Supply
In practice, consumer’s energy demand is usually derived solely from consumption for
indoor heating. Of course, the method of providing hot water via the flow principle or in

conjunction with storage facilities does have to be considered to avoid undesirable
demand spikes.
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In using one of the enumerated factors to determine peak demand for heat in a district
heating system, the close interconnection with calculation of indoor heat requirements
must always be kept in mind. If demand is calculated to within close tolerances as is the
practice nowadays compared to older methods, the factors have to be set closer to 1. As
much as possible every estimated value should be balanced by empirical values.
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Standard Load Duration Curve, Plant Utilization Period

Demand for heat varies widely over the course of the calendar year. This may be shown
in a variety of ways depending on whether we wish to show output against time, plot
energy in a given period of time or tabulate the statistical data. An initial example is a
diagram in which daily energy supplied is plotted chronologically for a year (Fig. 4.1-1).
It can be seen from the figure that the energy is supplied from two generating utilitys.

W self generation (MWh, )

o i Bhin

Fig. 4.1-1 Heat supplied from two generating utilitys, chronologically
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Widely used in energy management studies are diagrams which do not use
chronological depiction but plot the variables in terms of their numerical value. If, for
example, values for energy demand are plotted against the hours in the calendar year,
the result is the annual load utilization curve, as shown by curve 1 in Fig. 4.1-2.
Customary practice is to show it without dimensions, i.e. expressed in terms of
maximum heat load. Also shown in this figure is a qualitative break-down of the energy
demands for indoor heating, domestic water heating and industrial heat mentioned in the
preceding section along with heat loss.

The shape of the annual load utilization curve is determined by climatic conditions,
makeup of the consumer base and consumer behaviour. Important characteristics for
economic analysis of utilization of the facilities and parts of them may be derived from
the annual load utilization curve. Load utilization period is the quotient of annual energy
output and maximum heat load.

The aim of an economically viable heat supply system must be to achieve large-scale
supply of heat from the generating facilities. An important mechanism in this direction
is reduction of load spikes.

heat output %

70

60

60-4

industrial heat
4071

30- indoor heat
20 4
10- — ]
| hot water heating
network losses
o | | | 1 T t T — 1
0 1000 2000 3000 4000 5000 6000 7000 8000 8760 h

Fig. 4.1-2 Annual load utilization curve for a municipal heating system; schematic
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Fig. 4.1-3 shows the load utilization curves of a number of suppliers for towns of
medium and large size in the Federal Republic of Germany. Small towns show a similar
curve shape. The diagrams are for various climatic situations and show varying
consumer composition. By contrast, the geographic factors are eliminated in Fig. 4.1-4.
This shows heating networks having varying consumer composition in the same city (cf.

legend to figure).

In district heating networks, load utilization period based on maximum heat load is in
the order of magnitude of 2500 to 3000 h/a for indoor heating and hot water supply.
Load utilization period based on energy demand is around 1600 h/a. These values apply
equally to Central Europe and Northern Europe although there are major differences in
the design temperatures.
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Standard values on utilization by various heat consumers relative to energy requirement
are:

utilization (h/yr)

single family dwelling,

central operation 1700
multi-family dwelling 1800

office building 1700
hospital 1950
school, single storey 1450
school, two storey 1550

air conditioned buildings 2000 to 3000

These values give only a rough idea.

Diurnal Variation, Annual Variation

The demands made on central heat distribution systems vary from one time of day to
another as illustrated in the diurnal variation curve (Fig. 4.2-1).

Because generation of heat is usually connected with the generation of power, the chart
also shows diurnal variation in demand for power. Only use of heat storage makes it
possible to move the two variation curves somewhat closer together. The variation
curves for provision of heat in summer and winter differ markedly.
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Availability

In the operation of district heating systems, disruptions are bound to occur. Because
installations operate under only partial load except for a few hours a year, these
disruptions can usually be readily managed.

In the case of generating facilities, provision is made for reserve output capacity; there

being various approaches to apportioning reserve capacity, e.g:

e areserve capacity of 20 % is installed, or
e in the event of breakdown of the largest generating unit,
100 % of maximum capacity (for Europe) must still be available or similar to this.

System design must also include provision for supply of the reserve capacity.

No provision is made for reserve transmission capacity in pipeline systems, 100%
availability is assumed. Groups of pumps are arranged in such a way that in the event of
breakdown in one pump, 100% circulation capacity will still be available.

District heating networks develop from service lines or from a fan-shaped network
system. Large-scale network systems are sometimes linked together later to increase
reliability of service.

Occasionally pipelines will suffer damage and have to be shut down. For problems of
this nature, utilities must organize trouble-shooting teams. Disruption of operation can
be limited to a few hours. Even on major lines, outages should be kept to five hours
maximum.

In Finland, standards exist for maximum permissible outages. They are laid down
according to type of consumer, time of day and outside temperature. The figures are
shown in Tab. 4.3-1.
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Outdoor temperature (approximate)
-20°C -5°C

hours | hours | hours | hours | hours | hours

07-16 | 16-21 | 21-07 | 07-16 | 16-21 | 21-07
Nationally important building 1 3 5 3 5 5
Hospitals 3 3 5 3 3 5
Other asylum 3 3 5 3 3 8
Zoos, greenhouses 2 2 2 5 4 4
Important industry 2 2 3 3 5 5
Industry, offices 3 5 5 3 5 8
Apartment houses 7 5 1 8 5 10
Small houses 8 5 10 9 5 10

Table 4.3-1: Maximum Allowed Distribution Outages [9]
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Heat Density and Development Structure

It has already been pointed out in Section 4.1 that optimal utilization of installations is
required over a large part of the operating year. To some extent this can be influenced by
the makeup of the customer base. However because the greatest part of district heating
goes to indoor heating, there are relatively narrow margins within which this factor can
have an effect.

The heat requirements of an area depend greatly on the actual nature of local
development. Industrial plants, hospitals, schools, major hotels, etc. usually have special
consuming characteristics which have to be addressed in a specific manner. In
residential areas there is a great variety in the types of buildings, with differing
requirements for servicing as far as district heating is concerned. It is true in general that
the higher the heat density in the service area, i.e. the higher the energy demand relative
to the size of the area to be serviced, the more feasible the organization of a system. On
the other hand it is not possible to quote a critical value for heat output density above
which a district heating system is financially viable since there are still other factors
affecting economic viability. These include potential revenues from the sale of heat and
construction costs for pipelines.

There have been repeated efforts to categorize types of development. The most graphic
of these may be the findings of a Swiss study [28], the recommendations of which are
summarized in Fig. 4.4-1. It characterizes 11 types of development. Following is a brief
discussion of which types of development present what circumstances for a district
heating system.

Types 1 to 5 are not normally considered relevant to district energy systems. The most
economic types are 6, 7 and 8. Types 9, 10 and 11 always require special handling.

Whether it is possible to extend heat distribution systems to include development types
such as 1, 2 and 3 is viewed differently from country to country and even city to city. In
Central Europe, it is thought that economically viable servicing with district heating
does not extend beyond types 5 and 4 roughly. In Scandinavia, even type 3 and type 2
areas are readily serviced with district heating as well. In Finland, service is even
extended to areas of scattered development of type 1.
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The discussions presented here will illustrate that programs relating to energy
management and energy policy which exist in various countries greatly affect the
limitations of district heating. However, categorizing various types of development
cannot serve as a substitute for analysis of economic viability. Day to day working with
planning for district heating shows again and again that special circumstances can cause
the limits of economic viability to shift sharply, e.g. if a potentially serviceable area is
situated close to a trunk line or if construction of a distribution system can be readily

carried out etc. A specific analysis of economic viability for a potential area of service is
indispensable.
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Supplying Thermal Energy

In the planning process and the operation of systems there are a great many terms
relating to capacity in use, so that it is necessary here to start by defining the most
important of these. Fig. 5-1 shows in schematic form how capacities in the areas of

generation, distribution and consumption are used in the present text.

reserve
maximum heat output capacity J

capacity

minimum
capacity

1

heat network feed-in T
(instantaneous value)

storage capacity for
boost or discharge

usable heat consumption T

network losses

Fig. 5-1 Explanation of capacity-related terms

Moreover, in the district heating field definitions are necessary for:

e describing instantaneous values which change rapidly,

e taking into account the serviceability of units and components,

e describing either the demand or the supply side.
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Generation of Heat

The principal facilities available for the generation of heat may be divided into three
groups:

® combined heat-and-power utilitys,
* heating plants, and
° industrial sources.

they have a bearing on the operation and economic viability of network systems.

Heat-and-power utilitys simultaneously generate electricity and heat for large
distribution systems. They may involve back-pressure or extraction condensing systems,
gas turbines, engine-operated or gas and steam combination systems. These may be for a
wide variety of output levels, characteristic power values (ratio of power-to-heat
capacity) and fuels. The most commonly occurring types of heat-and-power utilitys are
mentioned in Fig. 5.1-1. Heat-and-power utilitys require heavy capital investment,
meaning that high utilization is vital for economically viable operation. The costs of
thermal generation are mostly dependent on the supply temperature of the heat being
distributed since hi gher temperature results in a high power loss in power-heat
combination. Only in the open gas turbine and reciprocating engine are the heat costs

independent of supply temperature since a] heat is available at a high temperature level.

Heating plants are operated almost exclusively with oil or gas fuels. They require
modest capital investment vis-a-vis heat-and- power utilitys but involve high fuel costs,
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and weekly rhythm of supply may also be overshadowed by long-term economic
influences. Often procurement of industrial waste heat is uncertain so that utilities have
to hold reserves somewhere else. It has happened that waste heat has been supplied with
such extreme energy fluctuations that storage heat has had to be cut in to offset dips in
output. Idiosyncracies of this kind have to be taken into consideration when evaluating

industrial waste heat.
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Separation of Base Load and Peak Load

Demand for district heat output with time follows the annual load utilization curve already
discussed. Peak load is only required for a few hours over the course of the year with the
result that the system as a whole is usually operated at only partial load. Because of this the
district heat business separates output into base load and peak load as do other parts of the
utilities sector. Base load operates with a high degree of utilization, peak load with a low
one: cf. Fig. 5.2-1. Minimal overall costs are incurred for separation of output by using, for
generation of base load, facilities operating with lower fuel costs and higher capital

investment. For peak load higher fuel costs may be accepted but the capital investment has

to be low.
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Fig. 5.2-1 Separation of output: base load vs peak load.
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This fundamental relationship is shown in Fig. 5.2-1. The small sidebar shows how
separation of output between two facilities can influence their proportion of annual energy
generated. In practice the proportion of base load in the power-heat combination in the
business of supplying district heat has tended to be from 30% to 50% of the peak load.
From this results a proportion of energy between 66 and 90 % of annual energy. Proportions
of base load more than 50 % are unusual. The lower value applies more for smaller systems,
operating, for example, with an engine-driven heat-and-power utility.

An actual illustration of energy supply from a geothermal facility is shown in Fig. 5.2-2.
Hot water for the distribution system is preheated by direct heat exchange with geothermal
water, component 1. When heat demand increases, the first thing used is waste heat from an
engine-driven block heat-and-power utility (component 2) before further generating

capacity from heat pumps is brought on. Area 4 represents the component of the peak load
boiler.
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Fig 5.2-2 Composition of the heat energy in a geothermal facility
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The separation of output initially described in principle is very closely regulated in major
facilities and finely tuned according to the economic data of each individual plant. Big
systems may contain thirty or more generating units. As an illustration Fig. 5.2-3 shows a
daily operating plan for heat generation to serve the city of Hamburg. Of the existing
generating facilities, only five are in operation on the day shown here.
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Fig. 5.2-3 Daily operating plan for district heat
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Output separation plays a critical role in thermal generation in heat-and-power utilitys and
heating plants and is of great importance for heat transmission lines. If transmission lines
are designed only for the base load component, good utilization can be achieved. Peak-load
generation then has to be installed in the serviced area. However, secondary and
intermediate distribution must always be designed for full peak output.

Thermal Energy Storage

Aside from the storage of energy, heat storage facilities allow separation of load for power
and heat in combined production or shifting of quantities of energy into different rate
periods, e.g. day/night rates for power consumption.

The storage medium in heat storage facilities is water. In the main, storage tanks are built
for operation at normal pressure and below 100°C. However, there are pressure-type
reservoirs up to about 160°C which may be set up in a battery of as many as thirty
cylindrical pressure tanks. Fig. 5.3-1 shows a non-pressurized reservoir tank and Fig. 5.3-2
a reservoir tank for up to 32 bar and 180/60°C.
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Fig. 5.3-1 Non-pressurized reservoir tanks
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Fig. 5.3-2 Pressurized reservoir element for 32 bar and 180/60°C
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The utilization and hence the economic viability of heat reservoirs is determined by the
frequency of the charging cycles. Experience has shown that only reservoirs having several
charging cycles per week are economically viable. Once in a while however reservoirs are
built not for economic but for operating reasons.

For example, there may be a need to keep engine systems operating for certain minimum
periods yet this may not be possible through network supply during periods of low demand.
Reservoir tanks may also be used to store network supply water.

Efforts are also made for economic reasons to use the water circulated in the system for
storage. This is made possible by raising the temperatures in the supply or return pipes. This
storage technique differs for pipeline systems under DN 400 and distribution networks as
opposed to major trunk lines. In distribution networks this practice has not proven effective
in regular operation. Experienced operating personnel do indeed use this option on rare
occasions but not as a regular practice. The volumes of heat which can be stored are small
and storage has undesirable side-effects for operation: the raising of supply temperature
produces a steady decline in throughflow since the volume regulators of the suppliers
service installations are activated one after the other.

More promising is heat storage in major pipeline systems over roughly DN 400 since these
lines hold relatively large volumes of water. Even here there are operating problems
although it seems they may be managed using central process control engineering.
Developments in this area are proceeding, although as far as their present status is
concerned it has to be said that network storage still does not contribute significantly to the
economic viability of the system as a whole.

Network Loss

Network loss is defined as the difference between the annual volume of heat put into a
district heating network and the annual volume of heat delivered to all of the consuming
parties. In engineering practice for modern district heating networks using composite
plastic-sheathed pipe, losses are assumed to be 6 to 8% of input. Older network systems
often show higher loss since they were designed on the basis of earlier energy costs and are
poorly insulated. Heat loss is in the area of 3% in winter at peak output and perhaps around
20% in the summer when the entire system is kept in operation solely to supply hot water.
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Heat loss as a proportion of network input represents a rough definition. A proper view in
terms of physics would take into account the energy added by water circulation involving
pump energy in the form of heat of friction being added to the water of the network system.
According to the law of cooling, the magnitude of heat loss is proportional to the difference
between the supply temperature and the ambient temperature.

In actual practice, heat losses are only recorded statistically on the basis of system input and
heat billed at the customer end. It is interesting to notice that, in comparison to electricity,
transmission losses for district heating are not greatly different from those of power
transmission losses - about 5%.

For trunk lines it is mandatory that thickness of insulation be given special consideration. In
this regard, cost and benefit have to be balanced against one another. For more on this
aspect, cf. Section 7.4.2.

But heat loss means not only energy loss but loss of temperature as well. At peak load,
temperature loss from generation to final consumer has been shown to be markedly under 5
K. This drop may however increase considerably at low output and adverse flow conditions.
Should supply problems be anticipated for individual consumers, this may be specifically
addressed by installing a bypass, possibly thermostatically controlled. However, bypasses
are not desirable from an energy management standpoint.
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Principles of Network Design and Cost Factors

The planning of a district heat distribution system is an interactive process involving
engineering studies, business forecasts and the construction work itself. Engineering design,
actual construction and economic viability are mutually interrelated. Design is a process of
closely-interrelated optimization.

Discussed in this section to begin with are the most important design principles, followed
by explanation of economic aspects.

Because the relationships are more readily appreciated once their economic background is
understood, following is a rough idea of the cost structure involved in district heating.

Supplying buildings with heat involves costs on the part of the heat utilities as well as costs
on the part of the building owner for installation and operation of his facilities. The
boundary of property of the heat utility and therefore the boundary of costs to the building
owner depends from the special heat utility and differs from country to country. The
individual cost components are shown as orders of magnitude in Fig. 6-1 as an example for
a standard case involving long-distance heat transmission. The figure shows the separation
of total costs in components of investment costs, operating costs and heat generation costs.
It can be seen, that investment costs are the most important cost component (s. also figure
6.2-1).

[ p>7]————__ _ ctirculation costs for
domestic installation
\neuhng system
building awners Y ——
costs ~——hot water heating
\\~dumeshc installobion
- :
L aamesv camponent
~. service installations/
utilities component
uiilities T—neat distributian
costs
= transmission 30 km
T ——————generation of heat
Fig. 6-1 The cost structure of district heating - shown are cost components for the

district heating system and the domestic system
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In present-day district heating utilities, the key cost components are in heat distribution and
heat generation. Heat transmission systems are built within the bounds of economic
resources; in Denmark over distances of up to about 50 km. Heat distribution costs
frequently account for something in the area of 60% of total costs.

Engineering

The design of district heating systems calls for extensive experience in the field and is
carried out either by consultants independent of the producers or by the utility and/or
suppliers also. It is usually not difficult to set up a system to operate properly but it does
require special expertise to:

¢ set up an economically optimized system which meets the numerous technical and
economic criteria,
e assure the requisite operating safety, and

e provide long operating life with low maintenance.

It is desirable that there be continuous exchange of information among planners,
construction supervisors and operating personnel.

Minimum Operating Life

The terms operating life and depreciation period are used to describe the life span of
district heating systems. Operating life refers to physical life span whereas depreciation
period relates to the business and tax aspects of operation. The two are defined separately
from one another and are important because of the high value of distribution facilities.

The operating life of a district heating system is the time during which the facility is
maintained in an operating state. Should the cost of maintaining a line as it ages exceed the
annual costs of a new line, the old line has reached the end of its physical operating life and
is replaced. Of course a line may reach the end of its operating life for reasons relating to
reliability of supply or operating safety.
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By contrast, depreciation period is a unit of time defined in terms of business
considerations. It sets out the period of time over which the system may be depreciated for
wear and tear for such things as tax purposes. No further investigation of depreciation is
given here since this depends largely on individual approaches.

The annual expenditures for a system or network, especially the costs of servicing the
capital investment, represent a major cost element for a utility. Servicing costs, which
naturally depend on the size of the capital investment involved, are also dependent on
interest rates and physical operating life. Following are some explanatory remarks from an
annuity perspective. If, at a constant interest rate of, say 8% as in the example, annuities are
plotted as a function of operating life, the result is a curve as shown in Fig. 6.1.1-1 (annual
annuities, supplementary). In the short term, the annual costs are very high but these drop
over a lengthy operating life of about 50 years to values in the order of magnitude of the
interest rate. This situation shows why minimum operating life values of about thirty years
are necessary for district heating lines. On the other hand it also indicates that it makes no
sense to demand much higher operating life for district heating lines, especially if this
would increase construction costs.
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Fig. 6.1.1-1 Annual supplementary annuities of an investment as a function of
operating life, rate of interest 8%
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The graph also illustrates the considerable losses an investor can suffer when his district
heating network does not last for the projected operating life. If operation lasts only a short
time, the annual costs increase drastically.

Figures for operating life customarily used by the utilities are shown in Table 6.1.1-1.

Table 6.1.1-1 Table of common operating-life figures for district heating lines

Pipeline system Utility-specified operating life
in years

1. Plastic-sheathed pipe 20 to 40

2. Above-ground 20 to 50

3. Trenched lines 20to 50

4. Steel-in-steel pipe 20 to 40

5. Condensate pipework 20 to 30

The operating life specified in this instance is high compared to other industrial
installations. This means especially high criteria for the planning and construction of the
systems, but also as far as builders’ guarantees are concerned. These guarantees usually
cover two years. Frequently supply contracts will extend the period to five years for district
heating components. Occasionally a ten year guarantee will even be negotiated. In all cases
a considerable gap looms between guarantee and required minimum life span in which lies
the investment risk of the utilities.

The suppliers are therefore obliged to plan carefully and must be mindful of producing high
quality construction. Careful planning means reliance on practices which have proven

themselves over the long-term, accepting only proven low-maintenance components, using
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only reliable characteristic material values for analyses, etc. It should be noted here that the
stresses and strains from continuous operation with hot water are constantly underestimated
by neophytes in the field. On the supplier’s side as well these are naturally downplayed.
However the planner must not become so cautious and conservative that he ignores new
developments which would lower costs and represent advancement.

Supply Temperature

Because district heating service is developed for the most part within existing urban areas
and since the servicing of recently built areas accounts for only a smaller portion of output,
the temperature specifications of already existing indoor heating installations have to be
complied with. These are mostly designed for the supply/return temperature range of
90/70°C for old and 70/40°C for new systems. Because existing secondary systems are
usually oversized they can almost always also be operated at 80/60°C or even lower. Hence
the minimum requirement from the consumer side for supply temperature in the district
heating system is 80€ to 90°C or 60° to 70°C in new systems.

The question of the supply temperature to select is not much easier to answer from the
generating side. High supply temperature increases the transmission capacity of the network
and reduces the requirement for capital investment. On the other hand, a higher supply
temperature raises the cost of generating heat in combined power-and-heat operation. It also
increases construction costs for pipeline systems. A figure cannot be quoted here since it
has to be determined from specific analyses of economic viability. Following however are
some broad points of information regarding supply temperatures used in various district
heating networks in Europe.

As a rule district heat distribution networks are operated with varying supply temperatures.
Specific to the country the maximum supply temperature is between 90°C (typical for
instance to Denmark) and 140°C (typical for instance to Germany). This is discussed further
in Section 6.1.3.

In addition to lower thermal generating costs (power-and-heat utilitys, industrial waste
heat), constant operation with lower supply temperature also offers important benefits from
an engineering standpoint: the service life of polymer materials in general and plastic-
sheathed pipe in particular increases sharply. Plastics may be used as a pipeline material,
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heat compensation can be designed smaller or indeed dispensed with, etc. The advantages
of operating with varying temperatures on the other hand are primarily better utilization of
the transmission capacity of the network and lower volumes of water circulation.
Comparing the two approaches, there is a noticeable trend even in central Europe toward
lower supply temperatures.

As to distribution, the situation regarding the transport of heat over large distances of more
than 20 km say, presents a different picture. Here pipe systems of greater bore for high
pressures are required. Their optimization may result in higher supply temperature. The
transmission lines and the distribution network systems are then linked by appropriate
converter utilitys where pressure and temperature are regulated (cf. also Section 7).

Regulation of Output

In district heating networks output may be regulated by adjusting supply temperature or by
altering the volumetric flow of hot water. There are two extremities as far as operating is
concerned:

1. Temperature-only regulation

The mass flow remains constant; output is increased

only by raising the supply temperature.

2. Volume-only regulation
Supply temperature is kept constant while output is

regulated solely by means of mass flow.

In practice a combination of the two techniques is used allowing for a broad spectrum of
options between the two extremes. To compare trends in this regard in various countries it
must first be observed that the regulatory approach in Denmark comes closer to the volume-
only extremity whereas for the most part Germany has implemented a temperature-control
regulatory approach. German network systems are frequently operated with variable supply
temperatures up to 1309C and occasionally as much as 140°C, with supply temperature not
lowered below 70°C in summer because of the need for hot water supply.
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supply temperature is raised with decreasing outside temperature, the maximum mass flow
is reduced.

Qt,m

——

I l | | | | | |
O 1000 2000 3000 4000 5000 6000 7000 h/a 8000

Fig. 6.1.3-1 Explanatory illustration of temperature and volume regulation in district
heating networks [27]

As far as the actual regulation process is concerned there is a major difference between the
two principles in terms of inertia. Using variation of mass, the requirement for heat output
at constant supply temperature is regulated by altering the rate of mass flow in the
circulating system. Using this technique even demand spikes can be dealt with at once via
mass flow rate. Temperature regulation on the other hand is unsuited to accommodating
sudden swings in demand. Travel time for the heat medium to reach the most-distant
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customer may amount to as much as several hours in extensive networks, especially at low
output.

The main advantages of temperature regulation lie in the fact that not only is heat loss lower

but the energy required for water circulation is smaller as well.
The regulatory process has an influence on operating costs, primarily in terms of:

® pump power requirement,
e heat loss and
¢ utilization of the various generating facilities.

Pressure Control

Pressure control establishes pressure level and allows pressure to be maintained (what is
known as static pressure) following shut-down of the circulating pumps to prevent hot
water evaporation. Static pressure must be high enough so that it remains above the
saturated vapour pressure of the hot water. This also applies to the operating pressure which
develops when the circulating pumps are on. Static pressure and operating pressure are
equal only at the start-point of pressure control. The pressures are different at all other
points on the distribution network.

The various mechanisms for pressure control are discussed in Section 7.2.2.
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Economic Viability

Heat from large distribution systems is only to be sold at prices which are competitive with
other heating systems (mostly gas or oil). This represents the so called investment price. For
consumers the comparison of total heat costs is difficult, because cost structures of district
heating and gas or oil generated heat are quite different. Total costs of a gas or oil heating
system include besides energy costs the costs of servicing the capital investement.
Additional to these costs for servicing, maintainance and costs for the used room are to be
considered. Therefore it is the task of the supplier to make the interrelations transparent to
the consumer.

From the view of the supplier, heat from large distribution systems must be sold at prices
which cover the costs incurred by the utilities plus an acceptable profit.

The maximum distance that heat can be transported is primarily a function of obtainable
price, the costs of thermal generating and the network system costs.

From an economic standpoint a large heating utility can only be extended to the extent that
the costs of heat generation and/or transmission of heat, heat distribution and delivery of
heat remain below the investment price of the heat. This connection is shown in Fig. 6.2-1.
The left column of the illustration shows that the sum of the costs from generation,
distribution and miscellaneous (billing, insurance, administration, taxes, etc) must be below
the investment price of heat. The boundary between generation and distribution is shown as
variable: when heat generation is expensive there is only small scope for heat distribution.

The right-hand column of the figure further divides costs due to heat distribution into two
parts: investment costs (fixed costs) and operating costs (variable costs). The height of the
column is almost exclusively determined by the servicing costs on the investment.
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Of course the investment price of heat is not a fixed quantity but evolves with the behaviour
of the marketplace. Accordingly the options and limitations for district heating services are
constantly changing. These must be constantly monitored and forecasted for utilities
planning.

Setting up a district heating system is capital intensive. In absolute terms, investment in
heat-and-power utilitys is dominant for operating a combined power-and-heat system.
These are used to provide simultaneous generation of power and heat for district heating
systems. It is generally accepted that expensive systems are absolutely necessary for the
generation of power. This then relativizes the costs of generating district heat since power is
being generated as well as heat in the same system.

The relative cost components mentioned in Fig.6.2-1 are determined from specialized
analyses of economic viability. These analyses usually follow a format as shown in Table
6.2-1. First, the necessary investment costs are determined and from these the annual capital
costs. To these are added the annual operating costs. The sum of the annual costs is
expressed relative to the amount of heat sold, yielding the costs per unit of heat. An
important part is played by the credit entry for the power also produced from combined
operation. It can dramatically lower heat costs under the right conditions.

In the following sections, reference will occasionally be made to this analysis format or the
cost components from Fig. 6.2-1.

Lastly it should be stated, before the details of cost factors are discussed, that in the present
book every effort is made to avoid citing absolute figures for costs. Although this may
initially disappoint some readers, it is dictated by the requirement that the statements made
here continue to be valid beyond national borders. Those in the industry are aware that costs
and prices cannot simply be converted on the basis of exchange rates, not even among
countries of the European Economic Community. For example, in the various countries
considered here:

¢ fuel prices for coal and natural gas may differ by a factor of as much as 4,
¢ construction costs for district heating pipelines may differ by a factor of 3,

* in exceptional circumstances, differences in power prices may amount to as much as
400%, etc.
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Consequently in a comparative look from one country to another it is not meaningful to
quote absolute cost figures.

Because of this the present text tends to use cost relationships which are objectively valid.
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No. |Type of cost costs annual heat
costs costs
1. |Investments-Generation
(H & P utilitys + heating plants $
1.1 | capital costs - generation $/yr
1.2 |fuel costs $/yr
1.3 |operating costs $/yr
1.4 |less power credit less $/yr
1.5 | heat generation costs (1.1 to 1.4) $/MWh
2. |Investments - Distribution $
2.1 |capital costs of distribution $tyr
2.2 | operating costs - distribution $/yr
2.3 [heat distribution costs (2.1 + 2.2) $/MWh
3. |Miscellaneous Costs $/yr
heat billing charges, administration,
insurance etc. $/MWh
4. |Total Costs ‘ $/MWh

Table 6.2-1 Format for determining the costs of long-distance thermal energy
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6.2.2

The Cost Impact of Generation

The majority of the heat for district heating systems is generated in base-load heat-and-
power utilitys and the peak load portion in a heating utility. A heat-and-power utility
produces high capital costs and low fuel costs. The situation is reversed for heating utilitys.
Generally speaking, the heat from a heat-and-power utility is more expensive when put out
with higher supply temperature than with lower since in that situation the power loss in the
heat-and-power utility is greater. Only in the open gas turbine process does this relationship
not exist.

The supply temperature for a district heating network can be influenced by switching peak-
load generation. The two may be switched in series or parallel so that heat is added to the
base-load heat in the peak-load boiler.

A significant item in optimizing district heating systems is whether or not the costs of

thermal generation are dependent on supply temperature or not. One should also determine
if peak-load generation can be installed close to the main area of consumption. For the heat
transmission installations this means that they can be operated under much more favourable

economic conditions.

Energy Prices, Rates

In the energy marketplace, energy prices do not always find their own level since in a
number of countries they are affected by energy policy. They influence the economic
viability of long-distance thermal energy in a variety of ways. They have a direct effect
through fuel costs but may also have an indirect impact via the competition situation in the
energy market. Following is a discussion of three very different aspects relating to energy
prices.

Fuel prices have a direct effect on the costs of thermal generation. The main alternative

energies include coal, oil, gas, electricity and other.
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At world market prices, coal is usually the least expensive form of energy. Because firing
plants for coal also call for high outlay in terms of plant systems and operation, coal is
favoured for base-load generation. Oil and natural gas generally have the same price level
which is markedly above that of coal.

They are preferred in small heat-and-power facilities and peak-load installations. Under
certain circumstances, power too plays a part in generation, e. g. night power from nuclear
generating utilitys or hydroelectric power in summer. If the price of power is sufficiently
low, electricity may be used to generate heat, e.g. to drive heat pump installations or in
electrically heated storage heating utilitys. Garbage or waste is not looked on here as a fuel,
since garbage incineration facilities are primarily built for waste disposal, with the resulting
heat a by-product.

The second item affecting the economic viability of long-distance thermal energy is its
competitive position vis-a-vis the consumer. The upper price limit of this thermal energy is
roughly at the heating costs of the next cheapest energy form, e. g. fuel oil extra light.
Should this limit be exceeded, customers will opt for fuel oil heating in a free market
situation. This upper limit, i.e. the previously described investment price for long-distance
thermal energy, defines the latitude available to the supplier of long-distance heating for
development of his system. The sum total of the costs for generation and distribution must
still be below this limit.

On the other hand, opportunities for developing district heating networks improve when the
competitor energy is expensive. Then the investment price for long-distance energy is high,
so that for a given producer situation there is greater manoeuvering room to develop district
heating into a large-scale distribution system.

These mutual relationships are evident in the Scandinavian countries (except Finland, where
the oil taxes are at the same level as in Germany). In Denmark, for example, petroleum
prices are high with the result that heat is transported over great distances in conjunction
with favourable generating capacities in large coal-fired heat-and-power utilitys.

The third aspect of energy prices has to do with the price of long-distance thermal energy
itself, specifically with price structure.

The main components of the price of long-distance thermal energy are the fixed costs from
generation and distribution, the variable costs for fuel and operation and the costs for
metering. On this basis, the cost of long-distance thermal energy is composed of the
following components: basic price, running charge and meter charge.
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It has proven to be good practice if price setting is oriented to the actual cost structure of
the utility. Using this approach, the basic price in a long-distance thermal energy system
with its established high capital commitment can easily amount to more than 50% of the
selling price for the heat. Moving away from the real cost structure, e.g. by accounting for
portions of fixed costs in terms of the running charge, a long-term phenomenon such as
energy conservation - which after all mainly has an impact through the running charge -
creates a widening supply gap for the utility.

6.2.3 Investment

The vast majority of investment in a district heating network is investment in pipeline
systems. In addition there are outlays for the boiler house facility including the water
circulation system and possibly for booster and suppliers service installations. The main
objectives in the building of a pipeline system are low construction costs and a sufficiently
long operating life of at least thirty years.

In district heating networks, small-bore lines make up a high proportion, whereas large-bore
lines which come in sizes up to DN 1400, are proportionately few. Fig. 6.2.3-1 gives an
idea of bore distribution in district heating networks. Cost reductions for small-bore lines
are therefore especially effective.
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Because of the high costs of pipeline laying it is preferable if district heating lines can be
laid in areas of high heat density. In these areas construction is bound to be more expensive
due to various impediments. Costs are increased by road traffic, lack of working space,
obstacles above and below the surface, etc.

A second important cost factor is the method of laying the pipe. Although today plastic-
sheathed pipe is used almost exclusively for lines laid below ground, there are still other
methods of laying lines. The relative cost aspect is shown qualitatively in Fig. 6.2.3-2. The
figure gives a comparative look at methods of laying lines.
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Since reducing construction costs is the first priority of all those whose business is in the
industry, there is an ongoing exchange of views on this subject in order to improve the
technology, employ new materials, build more cost-effectively etc.

Looked at internationally, the costs of pipeline construction are very low in Scandinavia
where in recent years they have been successful in systematically lowering the temperature
level to below 1000C. The resulting reduced stresses have allowed simplifications in
pipeline construction. In Denmark, with the low supply temperatures primarily in use there,
there has been a trend toward use of small-bore medium pipe of plastic at very reasonable
cost.

The low construction costs of network systems in Scandinavia are attained by laying their
systems underground. The costs of materials do not differ greatly. Fig. 6.2.3-3 gives an idea
of the various cost components in below-grade construction.

sand, backfill and
delivery

disposal of excavated
earth

traffic safety

gutters, curbs

site survey

construction site
facilities

trenching,sheeting and
bracing

site preparation

0 5 10 15 20 25

Fig. 6.2.3-3  The cost components of below-grade construction for small-scale
construction projects [38] (c. 100 m line length)
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The wide spread in the attainable construction costs always tends to start new debates on
options for lowering costs. Fig. 6.2.3-4 shows actual costs in a number of cities for a variety
of construction projects. From experience maximum values are 3 to 4 times higher than
minimum values. Extremly high construction costs mostly result from special conditions.

400 500 600
bore

300

200
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Fig. 6.2.3-4 Costs of laying plastic-sheathed pipe
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Maintenance costs also represent a component of investment costs since they serve to
maintain the value of the system. Because there is a relationship between the quality of the
construction of lines and the required outlay for maintenance, there are certain variations in
approach on the part of utilities. Following are commonly used:

trenched lines between 0.7 and 2.0 %
above-ground lines between 1.0 and 2.6 %
plastic-sheathed pipe between 1.0and 2.5 %

steel in steel pipe

asbestos-cement pipe between 1.5and 2.5 %
& poured asphalt process
condensate pipe between 2.0and 3.0 %

Occasionally, special values are applied for transmission lines and domestic service lines.
For transmission lines they are then somewhat lower at around 0.5 % and for customer
service lines higher than the figures cited above.

Cost Impact of the Operating Parameters

In day-to-day operation, the operating parameters of temperature and pressure conform with
the demand for output of the nétwork. The design of the installations and hence the
investment are determined by the maximum values of supply temperature and pressure.
However because a district heating system is operated most of the time at partial output, the
annual operating costs are created by the figures from actual operation.

Following is a discussion of the cost impact of the two operating parameters. The
discussion involves the principal interrelationships and applies equally to heat distribution
networks and for transmission lines over great distances. However because the operating
parameters affect the costs of heat distribution or of long-distance transmission in different
ways, different operating data are often chosen for the two areas. Frequently, large-scale
transmission systems are operated using higher temperature and higher pressure.
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The Impact of Temperature

To discuss temperature it is necessary to distinguish among the effects of:

e supply temperature,
e return temperature and

e the temperature differential between outgo and return.

Modern district heating networks (mostly using variable operation) are operated at
maximum supply temperatures between roughly 80° and 130°C. Because heat generation
can usually be provided more effectively the lower the supply temperature, e.g. in combined

heat-and-power operation, generation has a downward tendency.

One serious factor in building networks is the existence of an upper limit for supply
temperature of about 1309C resulting from the construction costs of pipeline systems.
Plastic-sheathed pipe, the most cost-effective type, may only be used up to 130°C.

As far as pipelines are concerned, reduction of supply temperature means an increase in the
cross-sectional area of the pipe. This increases the investment required. However, low
supply temperature also has a positive effect in that it simplifies construction (less serious
heat expansion) and increases operating life, e.g. through slower ageing of polymer
materials.

Low supply temperatures have a positive effect on operating costs in that they result in
lower heat loss. On the other hand lower temperature for the power requirement of
circulation means greater volumes of water and is undesirable. Generally however between
heat loss and circulation, the advantages of lower heat loss prevail.

Return temperature should always be kept as low as possible since it directly affects
transmission capacity. Today return temperatures between 60° and 40°C are attained, albeit
the lower limit only in specifically designed domestic installations (standard in Finland).
Indirect heat transmission will necessarily increase return temperature due to the effect of
the heat exchanger. Frequently it is also overlooked that in principle mixing of the return in
the domestic installation raises return temperature.
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The temperature difference between supply and return is the truly relevant factor in the

carrying capacity of a network, not the temperatures in themselves.

The Impact of Operating Pressure

Distribution networks are mostly built in the rated pressure range of PN 16. Networks in the
PN 10 range show little in the way of cost advantages. Maximum operating pressures of 10
bar are not often exceeded. There are even large district heating networks having more than
100 MW capacity in which the maximum operating pressure is less than 6 bar. This
assumes however a network in level terrain and having direct servicing with a low level of
building development.

A limiting factor from the consumer side with direct servicing is the maximum rated
operating pressure in the domestic installation. Older customer installations or systems are
sometimes only rated for a maximum of 4 bar. It may happen that a customer’s system may
have to be serviced through a heat exchanger.

While rated pressures of more than 16 bar in distribution systems require little more in the
way of pipeline material, they do call for expensive hardware such as pumps, armatures,
compensators etc. Pressure ranges of PN 25 and more are therfore only built in difficult
terrain and for transmission lines. The optimal design pressure can only be determined from
comparative cost studies.

Network/Customer Interchange

The customer uses the heat from the network system for indoor heating and usually for hot
water heating as well. Supplying hot water assures a partial load in summer and improves
the economic viability of the district heating network.

Over the years supplying hot water has increased in importance as heating energy
consumption has declined as a result of energy conservation. This has increased the demand
for heat to provide hot water as a proportion of total demand: occasionally reaching as much
as 25% of consumption.
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Indoor Heating

The demand for heat from a district heating service is dictated from the customer side by
the domestic heating installations. These are usually conventional radiator heating systems.
By contrast, the forced-air heating systems used by industry, department stores etc. usually
make lower demands on a district heating system.

The principal difference between direct service and indirect customer servicing via heat
exchanger has already been discussed in Section 3.2. Both techniques have their
proponents. On the whole the two variants occur with about the same frequency. Formerly,
direct servicing dominated for cost reasons. It allows the building of very inexpensive
customer service hookups and permits over a broad part of the service area water circulation
in the customer s installation through the pressure differential offered by the district heating
network. Since the advent of affordable element-type heat exchangers there has been an
increase in use of indirect servicing.

The customer is given access to the system via the customer service installation. It contains
the necessary regulating systems as well as a metering unit for billing. Service installations
are standardized to keep building costs down. There are numerous hookup arrangements
depending on the required operating data.

To illustrate the variety of styles and also the possible systems involved in customer service
installations, reference is made to two stylized depictions [14]. Fig. 6.3.1-1 shows important
styles of customer service installations differing in their hookup arrangements and the
components used. The variety shown in the figure is not exhaustive.

Further on this topic, Fig. 6.3.1-2 shows a numl;er of different regulatory variants. The
service installations shown have various functions relating to the particular temperature
factor and the output limit. Generally speaking, output limitation is included since at times
of excessive output consumption there is danger of inadequate supply in other parts of the
network.
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\til/

Fig. 6.3.1-2 Regulatory mechanisms in customer service installations from

Frederiksen/Werner {14]
a) indirect, no volume control g) intermixing with jet pump
b) with volume control h) electric volume control
¢) with return temperature control i) installation with remote

d) with pressure differential control metering
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Many utilities and district heating organisations have guidelines for building consumer
utilitys, which consider the different prerequisites and provide a tried and tested concept for
designers and fitters. As an example the guidelines of the Danish District Heating
Association are reported in the following.

These guidelines give a number of examples of how a well-functioning district heating
installation can be made. The types discussed are:

e direct single-flow installations,
e indirect installations with heat exchanger,

* direct installations in the form of a mixing loop with a 2-way automatic temperature
regulation unit,

* direct installation in the form of a mixing loop with a 3-way automatic temperature
regulation unit,

indirect district heating installation with connection to a supplementary energy source.

The diagrams included are in the form of skeleton diagrams on pages 82-91. No dimensions
are stated in the drawings, since dimensions normally depend on local conditions. Where
some of the components have to be integrated, special considerations may need to be taken.
This applies e.g. when integrating the meter in the installation.

The diagrams are very uniform and the numbering of components used in the installation
has been standardized to ensure that one and the same component has the same number in
all the diagrams where it is to be included. This means that the diagrams contain various
number lines that have not been filled in, since the components covered by the given
numbers are not used in the district heating installation concerned.
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General requirements

These guidelines apply to hot water installations with a flow temperature of up to 120°C. If
a heating utility has requirements concerning connection arrangements, the requirements of
the individual utility has priority over the general functional requirements given below. By
the same token, deviations desired from the diagrams shown normally require separate
approval from the utility in question; such deviating installations must be expected to have

to comply with the requirements given below as a minimum.

It must be pointed out that some heating utilitys do not allow all of the connection systems
described herein,; it is advisable to contact the utility before making the connection.

Because of the investment and operating economy involved as well as the operating
conditions of the finished installations, attention is hereby drawn to the potential variations
of the connection systems illustrated, depending on such factors as the utility ’s billing
system.

A heating installation connected to a district heating system must have a connection
arrangement which together with the other heating installation elements gives the best
possible cooling of the district heating water. The connection system is the link between the
service line of the district heating supply company and the user installation. Suggestions for
various types of connection system can be seen from the following.

The heating installation must be made to ensure that the user has the greatest possible

heating comfort while consuming the lowest possible amount of heat.

The user installation should be dimensioned to ensure that a cooling of min. 40°C of the
district heating water is possible at full load.

If the district heating installation is to function satisfactorily, it is crucial for the individual
components in the installation to fit together and to be dimensioned for the right pressure,
temperature and load conditions. Since the temperature and load conditions in the
distribution system may vary, depending on the location and the time of day, it is advisable
to seek information about these factors before carrying out design work and connection.
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When connecting special buildings, such as churches, castles or museums containing
irreplaceable objects, indirect connection (through a heat exchanger) should be considered.

As a minimum, the connection system must include:

L. Thermometers for registering flow and return temperatures.

2. Valves for separate blocking of spatial heating installations and water heating
installations.

3. Space for the meter assembly including valves to ensure that meter

replacement can be carried out with a minimum of water loss.

4, A dirt strainer in front of the installation and in front of the meter.

3 Unions or flange joints to ensure that the connection system can be
disconnected from the district heating system without cutting any pipes.

6. Branch pipes and valves for draining, ventilating and pressure-testing the
installation.

Attention is also drawn to the requirements concerning heating and hot water installations
contained in the building regulations.

Special requirements

The heating utility may make special requirements concerning the design and operation of
certain parts of the connection system, which is why inquiries concerning such requirements
should always be addressed to the utility prior to carrying out the design work.

Examples:

* Some utilitys insist that connection must be effected via a heat exchanger.
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® Meter size and type often decide the dimension of the hot water preparation unit; also the
pressure and temperature conditions at the utility may have a great impact on a particular
part of the connection arrangement.

e Special requirements may exist concerning the placing of the meter, e.g. insistance on
having ,,straight pipes* before and after the meter, or concerning distances from other

installations or building elements.

¢ The heating utility may insist on having a separate meter for specially heat-demanding
individual components.

e The heating utility may insist on a minimum cooling of the district heating water, e.g. of
30°C.

Description of position/numbering of components in diagrams

1. Main valves of the district heating utility

The main valves are supplied by the utility. If a welded valve or a threaded

valve is used, a union must be established just after the valve.
2. Thermometer

Thermometers are placed in sensor pockets with good contact to the
circulating water flow.

3. Meter

The meter is dimensioned and supplied by the heating utility.
Please note that the utility may have special requirements and guidelines
concerning the meter and its placement.

4. Stop valve

The stop valve must be dimensioned to match local pressure and
temperature conditions.
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Thermostatic valve

A thermostatic valve includes either an integrated sensor or a remote sensor
The valve regulates on the basis of return water temperature or service
water temperature by means of a remote sensor. The valve is dimensioned

to match load conditions and differential pressure.
Dirt strainer

Dirt strainers should feature an integrated solenoid.
Pressure differential regulator

The pressure differential regulator must be dimensioned to match load
conditions and differential pressure. The pressure differential regulator can
be placed on the flow pipe, but this involves a risk of air segregation in the
radiators, depending on pressure conditions.

Pump

The circulating pump is selected by using the pressure loss in the internal
heating installation under max. load.

Radiator valve

The radiator valve can be a thermostatic valve with room sensor, a
thermostatic return valve or a manually operated valve. The choice of valve
depends on the mode of operation, the function of the heating surface as
well as the use and layout of the rooms to be heated.

Manually operated valves must be pre-settable and be able to provide a
straight-line heat emission (exponential characteristics).

Non-return valve

The non-return valve in the mixing loop must protect the system against
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15.
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shortcircuiting, and the non return valve at the meter is intended to protect
against pollution of the meter during incorrect water filling.
Ventilation
Ventilation of radiators is effected by means of air escape screws.
Needle valve

Needle valves are installed on pipe branches located on the side of the main
pipe to avoid transfer of air or dirt to the pressure differential regulator.

Connection of temperature sensors

Pipes for sensor pockets must be placed near the meter assembly with
good contact to the circulating water; such pipes must be min. ¢ 25 mm,

ending with a 2" or 3 “ sleeve and cap.

Preparation of hot service water

The preparation of hot service water can be effected by means of an
accumulating water heater or a flow-type water heater. The capacity of the
tank must be dimensioned to match hot water consumption, district heating
water cooling requirements, cold water pressure and differential pressure
from the utility.
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16. and 17. Motor valve

18.

19.

20.

23.

24.

Correct dimensioning of the motor valve has a considerable effect on its
operating capacity.

Control panel

The control panel for handling pulses to and from components, such as an
outdoor sensor, flow pipe sensor or motor valve.

Flow pipe sensor

The flow pipe sensor is placed in a sensor pocket with good contact to the
circulating water, at the greatest possible distance from the shunt line and
after the circulating pump, if used.

Outdoor sensor and possibly spatial sensor

Normally supplied with the control panel.

Heat exchanger

The heat exchanger must be dimensioned to match the max. load, pressure
conditions and cooling requirements concerning the district heating water.
It must be noted that the heating utility may have special requirements
concerning the connection of installations with a heat exchanger.

Expansion

Either pressure expansion or open expansion must be established.
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25. Manometer

A pressure gauge must be established on the secondary side for checking
the water coverage of the installation.

26. Safety valve
The safety valve must comply with applicable regulations.
27. Thermostatic valve
Thermostatic valve with a remote sensor for regulating the flow

temperature on the secondary side of the heat exchanger. The valve must
be dimensioned to match the load and the differential pressure.

Direct district heating installations in the form of single-flow installations
(diagrams on pages 82 and 87)

Definition

A direct single-flow installation is defined as a connection system in which the district
heating water from the distribution networks is circulated directly through the heating
installation of the building and only flows through the radiators a single time.

Use

This connection system is the predominant one for single-family houses and small estates,

and sometimes in somewhat larger installations.
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Advantages

The structure of the system is simple, which makes the system relatively cheap to install.
One of the things that can be saved is a circulating pump. This system enables good cooling
of the district heating water (i.e. good utilization). This is a financial advantage for the
individual consumer where billing is by water volume metering (m3 consumption), and it
generally reduces losses in the street lines as well as the power for the pumps at the district
heating utility block in question.

Disadvantages

This system is not suitable for central control. Furthermore, residents can sometimes feel
cold around the feet because radiators should preferably be cold or lukewarm at the bottom.

Function and operation

Hot service water is heated in the hot water tank/water heater (15). For financial reasons,
the service water temperature should be as low as possible; because of chalk precipitation, it
should not exceed approx. 55°C. The service water temperature is regulated by adjusting the
thermostatic valve (5).

Heat regulation is effected only via the radiator valves (9), since the pressure-differential
regulator (7) is normally set once and for all and keeps a constant differential pressure via
the heating installation in the building. Manually regulated radiator valves or
thermostatically regulated valves can be used, either thermostats with a room sensor that
keep a constant room temperature or return thermostats which ensure that the return

temperature does not rise beyond the desired setting, i.e. thermostat setting.

The most economical operation is obtained by cooling the radiator water as much as
possible. The bottom of the individual radiators should preferably be almost cold.

If night-time temperature-lowering equipment is installed, it is important to make allowance
for the increased load during the upwards regulation period.
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During the summer months, the heating installation may be shut off completely by closing
valve (4) on the flow line to the heating installation.

Indirect district heating installation with heat exchanger
(diagrams on pages 83 and 88)

Definition

An indirect district heating installation is defined as a connection system in which the
district heating water (the primary side) is separated from the heating installation of the
building (the secondary side) by means of a heat exchanger. This means that the heating
installation of the building has its own separate circuit with a curculating pump and an

expansion system.

Use

Principally, connection by means of a heat exchanger can be used for all sizes of
installation.

Advantages

Indirect connection protects against the relatively high pressure from the heating utility and

limits the amount of water damage in case of leaks on the internal installation. The system

is suitable for central control.
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Disadvantages

The differential pressure of the district heat cannot be used as a driving pressure in the
heating system, which means that an investment must be made in buying and operating a
circulating pump/circulating pumps.

The district heating water cooling (utilization) is normally not quite as good in heat
exchanger system as in single-flow system, which may affect the economy of running the
installation.

Function and operation

Hot service water is heated in the hot water tank/water heater (15). For financial reasons,
the service water temperature should be as low as possible; because of chalk precipitation, it
should not exceed approx. 55°C. The service water temperature is regulated by adusting the
thermostatic valve (5).

The heat exchanger (23)

In relatively small installations, a heat exchanger with spiralled tubing or a plate heat
exchanger is used. The heat exchanger has been designed in accordance with the
counterflow principle, where the district heating water (the primary side) is taken through
the heat exchanger going one way and the local radiator water from the heating installation
of the building (the secondary side) is taken the opposite way. In larger installations plate
heat exchangers are most frequently used, also based on the counter-flow principle.

Heat regulation is effected by means of central temperature control, which may be
supplemented by regulation on the radiator valves. Manually regulated radiator valves may
be used, but thermostatic radiator valves are more common.

The flow temperature to the radiator system is regulated on the thermostatic valve (27)

according to the season and the desired room temperature, but must be set at a temperature
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which at all times is lower than the flow temperature of the primary side, since otherwise
the cooling conditions in the heat exchanger would not be reasonable.

If the return temperature from the radiator system is too high, the flow temperature must be
increased, and at the same time the radiator valves (9) must be closed somewhat (does not
apply to thermostatic valves).

To ensure quick, accurate regulation of the radiator water, the sensor for the thermostatic
valve (27) should be installed as close to the heat exchanger as possible, preferably
submerged in the heat exchanger on the secondary side flow to the radiators.

Correct dimensioning of the circulating pump (8) is of great importance when it comes to
obtaining a good operating economy. A pump with variable output is to be preferred. It is
important to note that, if over-sized, the pump will unduly increase the water circulation in

the system, which normally results in less cooling of the district heating water.

The most economical operation can be obtained by having the greatest possible cooling of
the radiator water. The bottom of the individual radiator should preferably be almost cold.

During the summer months it is possible to shut off the radiator system completely by
turning off valve (4) on the flow line to the heat exchanger (the primary side) while at the
same time stopping the circulating pump (8).

Direct district heating installation with mixing loop
(diagrams on pages 84, 85, 89 and 90)

Definition

A direct district heating installation with a mixing loop is defined as a connection system in
which the district heating water from the distribution network circulates directly in the
heating installation of the building via a mixing loop in which the flow water from the
distribution network is mixed with the return water from the radiators.
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Use

Mixing loop installations are used mainly in relatively large installations and sometimes
also in smaller housing blocks. Rarely used in single-family houses. The system is
particularly suitable where central control of the system is desired that includes a variable

flow temperature to the heating installation.

Advantages

In connection with central control, a missing loop installation can be connected to an
automatic temperature regulation system (‘climate system’) with outdoor sensor, flow pipe
sensor and, possibly, a spatial sensor, as well as with a 24-hour regulation program,
including night-time temperature-lowering, and a week program, if required. Furthermore, it
is possible to split up the facade and have a lower temperature on the sunny side than on the
shadowy side via several mixing loops and such a feature as especially low temperature for
floor heat, if installed.

Disadvantages

In a mixing loop installation, the differential pressure of the district heating cannot be used
as a driving pressure in the heating system, which means that an investment must be made
in buying and operating a circulating pump/circulating pumps. The district heating water
cooling (utilization) is normally not quite so good in heat exchanger as in singleflow
systems, which may affect the economy of running the installation.

Function and operation

Hot service water is heated in the hot water tank/water heater (15). For financial reasons,
the service water temperature should be as low as possible; because of chalk precipitation, it
should not exceed approx. 55°C. The service water temperature is regulated by adjusting the
thermostatic valve (5).
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Heat regulation is effected by means of central temperature control, which may be
supplemented by regulation on the radiator valves (9). Manually regulated radiator valves
may be used, but thermostatic radiator valves are more common.

The temperature of the mixing loop is controlled by a thermostatic 2-way or 3-way valve
(possible a motor valve) (16) or (17), which depending on the rate of operating allows a
smaller or greater amount of district heating water to be mixed with the return water from
the radiators.

To ensure good functioning of the installation, it is important for the thermostatic
valve/motor valve to be dimensioned to match the right load and the available differential
pressure. If the thermostatic valve/motor valve is too big, it will tend to oscillate. To
compensate for the variation in differential pressure, it is possible, as shown in the
diagrams, to install a pressure diffential regulator. This is significant especially where motor
valves are used. Because of the substantial load variation experienced over a year, it is
preferable in some cases to have a ,,summer valve® and a ,,winter valve®.

Correct dimensioning of the circulating pump (8) is of great importance when it comes to
obtaining a good operating economy. A pump with variable output is to be preferred. It is
important to note that, if over-sized, the pump will unduly increase the water circulation in

the system, which normally results in less cooling of the district heating water.

The most economical operation can be obtained by having the greatest possible cooling of
the radiator water. The bottom of the individual radiator should preferably be almost cold.

If night-time temperature-lowering equipment is installed, it is important to make allowance

for the increased load during the period of upwards regulation.

During the summer months it is possible to shut off the heating installation completely by
closing stop valve (4) on the primary side flow line to the heating installation, while at the
same time stopping the circulating pump (8).
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Indirect district heating installation with connection of supplementary energy source
(diagrams on pages 86 and 91).

This section deals with user installations that have supplementary energy sources for district
heating, such as various pumping installations, solar heat or wood and chip firing features.

In this connection, connection is required to go through a heat exchanger as outlined in the
skeleton diagrams on pages 86 and 91.

These diagrams only give one possible suggestion as to how to organize the secondary
side; however, many different solutions are possible, depending on the nature of the
supplementary energy source, the heat volume, the possible temperature conditions, etc.

The consumer must ensure that the installation is made in accordance with applicable
authority requirements, such as publication no. 58 from the Danish Labour Inspection
Service (Arbejdstilsynet): Stipulations concerning un-fired hot-water installations
(central heating installations with heat exchangers), and publication no. 42: Stipulations
concerning fired hot-water installations. It must be noted, for example, that not all
supplementary energy sources are allowed connection with the expansion tank closed.
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DIRECT
DISTRICT HEATING INSTALLATION WITH MIXING LOOP
2-WAY TEMPERATURE REGULATION SYSTEM
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The design of the customer service installation determines the return temperature. Utilities,
which strive for low return temperatures for business reasons, must find a compromise with
the consumer since for the consumer low return temperatures mean greater radiator surface
area and consequently greater outlay. In this context the situation for service hookup to new
structures or older buildings is not the same. In the case of new buildings, the added costs of
greater heating surface area are usually tolerable for builders. However in providing service
to older heating systems expansion of the effective heating area is usually not feasible. It is
of course established that in older domestic heating installations the effective heating
surfaces are quite oversized. Frequently these have also become too large owing to systems
relating to energy conservation. All these reserves should be utilized as much as possible to
lower return temperature. Experience has shown improvement in cooling down by 10 to 20
K to be possible.

Older installations in Europe are usually designed for temperatures of 90/70°C. Today,
district heating utilities usually contract with their customers for a return temperature of
500C.

Information from Finland is that 40°C is being specified for new installations.

If it is desired to lower return temperature in an existing heating network system to improve
cost-effectiveness, this is usually done in numerous smaller steps of a few degrees. This
involves feeling out the capacity limits of the customer s heating installation. Where
capacity limit is not met, and this is actually only a few installations, remedial action is
called for.

Hot Water Supply

Customer consumption of heat for hot water amounts to roughly 20% of annual
consumption. On the other hand the demand for output from small consumers may even
exceed the consumption for indoor heating. Provision of hot water has a low coincidence
factor. Additional spikes in heat consumption for hot water are not desirable in district
heating networks. In order that consumption for hot water heating not be superimposed on
consumption for indoor heating, hot water heating systems may include a priority
arrangement which allows interruption of the indoor heating system while hot water is
being heated. The consumer is not aware of brief interruptions in heating of as much as half
an hour or more.
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Demand spikes can be reduced if the hot water system is combined with a heat reservoir.
Heat storage increases the outlay required and the heat losses. Item 4 in F ig. 6.3.1-3 shows
the principal hookups for hot water heating. Hot water heating using the flow principle
creates the highest demand spikes; heating via heating coils in large storage tanks the
lowest. The 3rd version illustrated shows the storage booster system which allows direct
control of consumption used for hot water heating through use of a booster pump. In the
storage booster system the required storage volume is lower than in the storage tank system
by a factor of 2 to 3.

Heat Metering

Billing of the heat delivered to the customer by the utility is done on the basis of the set
maximum energy consumption and the volume of heat metered. Only in exceptional cases
is flat-rate billing or estimated usage etc. employed. The accuracy of metering must be to
government standards. Metering systems must be serviced and inspected regularly.

Metering systems operate on the principle that the volume flow of hot water and the
temperature difference between supply and return have to be measured separately. The two
values are fed into the computing system which calculates the amount of energy. The flow
meter is installed in the return line because it is exposed to lower temperature stresses there.
Common small heat consumption meters use turbine meters to measure volume. For large
metering systems, measurement of volume employs ultrasound or the induction principle.
Specific information on heat metering should be discussed with equipment suppliers or if
need be acquired from literature in the field.

Especially in areas with low-consumption customers, there is the danger that overly
complicated metering will force the costs of measurement up to unacceptable levels.

Early Financial Problems in Developing a District Heating Service

In establishing a district heating service or expanding one, generating and network systems
have to be set up before service can begin. Work has to be done beforehand which makes

the starting phase unremunerative. Usually the expenditures of a utility in the starting phase
cannot be offset by revenues. This relationship, which is established in an operating budget,
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is represented graphically in Fig. 6.4-1. The diagram shows profit and loss over the initial
years.
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Fig. 6.4-1 Profit and loss in establishing a district heating service, graphic
representation

The objective of the early strategy must therefore be to keep the annual start-up losses as
low as possible and to cross the threshold of profitability at an early stage. Whatever the
case, the objective in the interests of economic viability is to extend full servicing to the
planned consumers as early as possible and/or to strive for a high level of service in the
proposed service area.

The servicing of a given area with district heat is greatly dependent on its consumer
structure. An area of high heat density is desirable: one in which consumption is confined to
a small number of large consumers. An area with numerous, uniformly distributed small
consumers is not desirable. If it is assumed at the outset that network investment will
increase in linear fashion with the length of the system, the undesirable case can be shown
by a chart showing the percentage of installed line versus the district heating demand. This
is shown graphically in Fig. 6.4-2, curve 1.
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In practice of course, the size of customers consumption is not uniform, thus giving the
supplier the option of first servicing the more profitable customers before bringing the
smaller consumers on line as well - cf. curve 2. This can result in considerable economic
advantage since it may be possible, even with a relatively small installation outlay, to
achieve significant heat output. The prospective economic return from developing a district
heating service has to be determined from specialized economic analyses.

Yo
100

consumer demand to be serviced

1 T
50 100 o

Fig. 6.4-2 Schematic representation of development strategy

As has already been shown, the starting phase is the most difficult period economically in
the development of a district heating service. Subsequently the proportion of unutilized
capacity becomes smaller and, of particular note, the benefit of decreasing costs can be
utilized as the system increases in size.
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Under conditions suitable for pipeline construction, cost savings can also be achieved on a
small scale by servicing additional customers. This phenomenon can also be used on a large
scale by consolidating large district heating networks into a combined operation supplied
from a single major generating utility.

Decreases in costs are particularly large for small generating facilities. This is also evident
from Fig. 6.4-3 which shows how heat costs in an urban area can be lowered by
consolidating separated networks. The left-hand column shows the heat costs of a case
involving an area supplied by a number of separated networks with capacities from 8 to 20
MW. If the same consumers are consolidated into four sectors so that units of about 50 MW
in size result, the costs are those of the middle column. The right-hand column applies to a

consolidated heat unit capable of about 200 MW peak output; it displays the lowest costs.

heat costs
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output capacity
Fig. 6.4-3: Cost reduction as a result of size

Major consolidations of district heating systems have tended to take place wherever major
generating utilitys are located close to heavily built-up urban areas. In these areas
transportation systems are economically attractive which move heat over distances of up to
70 km and more. In Denmark with its string of major coastal power utilitys run on imported
coal, distances of more than 50 km are spanned.
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Planning of District Heating Systems

The construction of district heating systems can take at least ten years, with large systems
often in construction or expansion over decades. During this time numerous construction
measures must be undertaken, including both large projects for transmission mains,
distribution lines and pumping utilitys as well as small projects for the many individual
service connections, line extensions to the next residential street, and so forth. Planning
thus ranges from individual large high-cost undertakings to a multitude of small
construction sites requiring ongoing management. And there are any number of
intermediate stages between these two.

The steps in the planning of these systems are described below. The work of the planning
engineer is outlined first in an introductory section, followed by advice on market-geared
collaboration with the firm performing the construction work.

The remaining sections deal with technical matters: first, the hydraulics of circulation and
pressure maintenance, then specialized issues of long-distance heat transmission. Other
questions dealt with include static and thermal considerations as well as ways of reducing
operating costs.

General Remarks

The key planning objectives are:

1. a high degree of reliability in operation,

2. low construction costs, and

3. long service life for facilities.

Fulfillment of these objectives requires both in-depth technical expertise as well as cost-
conscious and business-like handling of construction projects. For this reason both
technical and market-related issues must be dealt with.

System Planning Process

In commerecial practice there are two types of planning for district heating;:

¢ simplified planning and design
¢ detailed planning and design.

Simplified planning and design reduces to a minimum the client's planning costs by
focusing exclusively on essential design criteria. The design approach is generalized, with
simplified methods and tables. Little attention is paid to ways of reducing costs through
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consideration of all route and system relevant aspects. With this approach the contractor
assumes the risks of unforeseen cost rises during the implementation stage.

An alternative to the simplified approach is detailed planning carried out by experts and
based on a detailed determination of all construction requirements, thereby making precise
calculation of construction costs possible. The client bears the risk for uncalculated
overruns during implementation.

Both methods are used. The difference lies in the shifting of planning costs to other entities
and in the shifting of cost risks.

Experts generally agree that careful detailed planning results in the lowest construction
costs. For this reason it is this approach that is outlined below.

Detailed planning for district heating must produce the following results:

1. Clear specifications for the construction work to be performed and a schedule of
materials with detailed estimates in order to arrive at accurate pricing without
contingency allowances and to avoid subsequent contract amendments.

2. Complete and detailed planning documents (route, elevation and other detailed
diagrams) with all required measurement, load and other design data, as well as
clear instructions for the construction process.

Such planning specifications enable the contractors to do their work in an efficient manner.

When the steps in the work of the planning engineer are examined, the necessity of close
cooperation with suppliers, local officials, property owners and others is immediately
obvious. Figure 7.1.1-1 identifies these steps and divides them into four phases, with
indications of the interaction with other participants. The figure should be regarded as a
basic outline that must, of course, be adjusted for regional construction regulations, local
conditions, current safety rules, standards, etc.

Sections 7.2 to 7.5 focus more closely on certain special technical planning steps.
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7.1.2 Market Aspects

In order to achieve the lowest construction costs full advantage must be taken of the
possibilities offered by a free market in construction work. Naturally, efforts should be
made to reduce costs through cheaper technical solutions, but in so doing one should not
lose sight that a cost-conscious business-like approach can often achieve even greater
savings.

Construction of a pipeline system involves various trades. The client enlists the help of a
planner and delegates implementation to an excavation firm and a pipeline builder.
Materials may be obtained directly from the manufacturer. To take full advantage of
market potential each participant must be employed in line with his field of expertise while
avoiding overlap between participants. Conflicts of interest are to be avoided at all cost.
While they may hold the prospect of short-term advantage, their effect is harmful in the
long term, as can be illustrated from numerous examples. One such example is the
importance of separating the work of the planner from that of the supplier. If a supplier is
entrusted with responsibility for planning, there is an acute danger that construction
decisions will favour his product. The same holds true for other points of conflict.

The advantages of the market are:
¢ Competition

The greatest market potential lies in competition. If the client sets out clear specifications for the
job, he can obtain competitive offers and select the best one.

¢ Quality

The choice of high-quality materials ensures long-term operational reliability, low operating costs
and a long service life

¢ Materials procurement by client

Direct procurement of expensive building materials from the manufacturer coupled with the
purchase of large quantities through the supplier can be advantageous.

¢ Making use of special factors
The use of new and improved structures, components and materials and taking advantage of special

opportunities that often arise in the market introduction of new manufactured products
(assuming quality is not jeopardized) can allow for savings.
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Over the years of system construction and expansion a close working relationship will normally
form between a supplier and a few capable subcontractors closely associated with the
supplier. In such cases it should be verified from time to time whether these firms' prices
remain competitive.

The work of participants in a construction project is regulated by contracts. The possible
structures of contract relationships between the client and his partners is shown in Figure
7.1.2-1. Responsibilities with respect to the work guarantee are similar.

In order to prevent a splintering of responsibility that may lead to delays and disputes, it has
proven beneficial in dealing with suppliers to bind all firms participating in the construction
in a joint liability and guarantee arrangement.

Two special points in district heating project contracts relate to the guarantee and the
collective contracts for small projects - the so-called one-year contracts.
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building firm
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jacket pipe, valves...)

EXAMPLE 2

7

Heat
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Client

EXAMPLE 3
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jacket pipe, valves...)
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Client

Heat
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jacket pipe, valves...)

Excavation
firm

Fig. 7.1.2-1: Contract relationships in enganging and guarantec
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The guarantee covers only the financial consequences of defects. It is no substitute for
quality in the planning and construction of pipelines.

Responsibility for formulating conditions of the guarantee generally lies with the client and
forms part of the order. The length of guarantee is subject to negotiation. In view of the
long service life of district heating lines it should cover a period of five years.

The guarantee should be formulated in such a way that lines of responsibility are clearly
drawn for the system supplier, excavator, pipe layer, monitoring system manufacturer,
sleeve installer, and others.

The guarantee must encompass not only the replacement of defective parts or installations
but also the necessary costs of locating the defect and the costs of consequential damage
(excavation, recultivation, etc.) to the extent these are directly associated with the
assessment and removal of damage.

One-year contracts:

To simplify dealing with the numerous small construction sites handled over the course of a
year, the supplier usually concludes contracts covering a number of subcontractors. These
contracts indicate the estimated order volume for a calendar year for all the construction
sites. Delivery of goods and services are then requested as needed from the subcontractors
at agreed prices. Unforseen difficulties on the construction site or cost overruns under
multi-year contracts can be compensated for by contingency allowances.

Project Management

The demands of project management must be viewed in light of the scope of the project. A
small job that can be completed in a single or several days requires a supervisor but no
organized management. In contrast, construction of a large transmission line, which can
take two years and require a substantial investment of materials and personnel, demands the
involvement of an entire team of project managers, and their work must be organized
effectively. Here follow some suggestions regarding the management of large projects,
from which the reader can determine for himself what is required in his case.

Project management must record and monitor:

¢ Timing and deadlines
¢ Costs
¢ Resources.

Not only deadline monitoring but also cost control is important since, with long-running
large-scale projects in particular, there is a risk of an unacceptable rise in construction costs
in the course of the project.
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Project management not only involves control functions but must also ensure smooth
cooperation among all participants by means of an appropriate flow of information.

A key task of project management is the breaking down of large projects into manageable
elements: construction jobs, route segments, trades, etc. The necessary parameters, such as
construction time, costs and materials, are then matched with these elements. Network
planning techniques have proven especially valuable in representing these relationships.
There are a number of computer software programs that make it possible to produce and
work with charts of this type and to manage large quantities of data on a personal computer.

The individual project phases outlined in Figure 7.1.1-1 can be handled by such networking
charts in varying degrees of detail, as required.

The main principles that a project leader or project team must lay down for project
management are:

e Determining which client departments, planners, subcontractors, authorities, testing
facilities, experts, etc. are to be involved in the management system.

e (Clarification of plan parameters, such as deadlines, construction time, materials
requirements, funds.

e Degree of detail.

e Time intervals for monitoring. The tightness of control should not only be based on a
frequent use of information but should also take into account the expense of repeated
data gathering. The data gathering must be organized to be as synchronous as possible
at all points and close to the time of reporting so that reports reflect reality as closely as
possible.

For large construction endeavors minimum reporting intervals of one month may be
chosen.

e In establishing the flow of information it must be decided what information is to be
included and in what volume; the locations (persons) to which reports go and, possibly,
the path reports are to follow should be indicated.

From these remarks it will be clear that the management of large projects requires a
substantial investment of work and organization. Software tools can efficiently handle
many of these tasks.

But the main goal of project management is to instill a positive attitude toward monitoring
among the project participants. The participants must accept monitoring in the conviction

that a large project cannot be completed within the allotted time and cost restraints without
ongoing control measures.
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The hydraulic design of a district heating system depends on a multitude of factors. The
main factors for design are

e Maximum heat load
o Temperature difference (supply-return pipe)
¢ The distance from the heat plant to the farthest customer

All of these factors will influence the pressure difference and the diameter of the pipes. In
addition choices have to be taken which will influence on hydraulic design.

Water circulation
PRESSURE DIFFERENCE

The maximum heat load is driven by the customers, and so is to a certain extent the
temperature difference. The temperature difference is given by the maximum temperature
the district heating pipes are designed for and the customer’s return temperature at
maximum load.

In addition the following factors and choices made in design will influence the hydraulic
and pump design. These are:

Coincidence factor

Due to the fact that not all of the customers have their peak load at the same time, the
maximum load at the heat plant can be reduced compared to the sum of the maximum loads
of the customers, usually by a factor of 0,7-0,9. This will depend on the number and type of
customers. The more customers and the more different types of customers the lower the
factor. This will also influence to some extent the diameter of the pipes, especially the
larger dimensions.

Customer’s equipment and conditions.

The most important thing is to achieve as low a return temperature in the customer’s system
as possible. For new buildings it is important, for example, that the ventilation system is
designed for water temperatures 80°C -40°C and not 80°C-60°C. It also is very important to
have no bypasses from the supply pipe to the return pipe, which will increase the return
temperature unnecessarily. Especially it is important to be aware of this factor when
connecting older buildings with heat boilers, who usually prefer bypassing from the supply
pipe to the return pipe through the boiler.

Heat exchanger Design

In systems with heat exchangers it is preferable to have small temperature differences
between the return temperature of the customer’s system and that of the district heating
system. The extra cost for a lower difference, for example 2°C-5°C, which will require a
larger heat exchanger, in most cases is small.
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Pressure drop over the customer’s station, consisting of a heat exchanger, regulation valve,
filter, heat meter and other equipment is usually set to about 100 kPa, which means, this is
the minimum pressure drop any customer shall have available over his station.

Supply temperature in district heating pipe.

The temperature depends on the type of insulation, but preinsulated pipe construction
usually limits the temperature to 120°C. In regard of heat loss and pumping costs the
temperature usually is varied in connection with outside temperature down to a minimum of
about 70-75 °C. This temperature is due to the domestic hot water treatment of the
customer.

Pressure drop, velocity

The velocity in district heating pipes varies with the diameter, usually between 1-3 m/s,
sometimes more. The bigger values for the bigger diameters, the smaller for the smaller. In
main pipes one usually has a design pressure drop of about 100 Pa/km, for smaller branches
maybe 250 Pa/km. To a certain degree this is depends on the extent of the pipenetwork.

Pipe dimensions
From the parameters given above and limitations the pipe diameters have to be calculated.

Heat plant

In the heat plant there will be equipment that causes extra pressure drop, such as heat
exchangers, filters, heat meters, regulation valves and a greater number of pipe bends. This
will vary from heat plant to heat plant.

Regarding the above parameters the hydraulic designs can be made. It can be calculated by
hand or by computer programs. Computer programs give a much better opportunity to
optimize the district heating system in regard to limits and costs.

A district heating system may have one or more heat plants, and in addition booster utilitys
placed elsewhere in the pipenet. Which solutions are to be chosen will depend on the
district heating system in each case. Fig. 7.2.1-1 and 7.2.1-2 shows example of pressure
diagrams for different solutions.

Regulation of pressure difference
Regulation of the pressure difference must be done in regard to which customer is having
the lowest pressure difference, or needs the highest pumping pressure. There are different

ways of regulating the pressure:

Fixed rpm with throttling valve
The pump will use unnecessary amount of electricity

Manual rpm regulation



107

Will take care of the flow and pressure drop variations to a certain degree when an operator
is present.

Automatic rpm regulation

The pump is governed by the customer having the highest demand for pumping pressure.
This may vary, so several customers can be chosen to govern the pump. The one with the
greatest demand is automatically chosen to govern the pump at any time. The sensors
measuring the pressure difference should be located so that they will not be shut off when
shutting off the customer. A place on the main- or branch pipes in the neighbourhood of the
customers is recommended. Fig. 7.2.1-3 shows a sketch of principle to automatic rpm
regulation of pumps.

There will be limits to pump regulation in regard of the highest and lowest pressure
permitted in the system. This may be solved by pressure sensors which have priority in
governing the pumps when the pressure limits are surpassed.

Special cases to be taken care of are:

Pump stops abruptly

This can cause pressure waves which can lead to too high pressure in low elevation parts of
the net and too low pressure in high elevation parts of the pipe system. The last may cause
boiling in the system which may lead to very hard pressure fronts when the steam collapses.

Valve opening and shutting

Opening and especially shutting a valve too abruptly will cause pressure waves when the
pumps are running. Especially in large diameter pipes it may be necessary to calculate and
try out the shutting and opening velocities in regard to pressure waves, and maybe it will be
necessary to slow down the pump speed when operating the valves.

Securing the pumps for low inlet pressure

Especially if the pump is placed at a high elevation in the district heating network it may be
necessary to secure the pump with a pressure sensor against low inlet pressure caused by
rpm values which are too high, or if a valve on the return side of the pump is closed. In the
same way it is wise to secure the pump against shut valves on the forward side with a
temperature sensor.

Securing special parts of the net for damages
In using railway right of ways, for example, it may be required to use automatic shuttoff
valves to protect the railway from water if the pipe should suffer damage.

DIAMETER OF PIPES

Diameter of pipes may be calculated manually or by computer programs. A computer
program gives the opportunity to optimize the district heating net much better in regard of
netcosts, pump costs, pressure and pressure limits and what if scenarios in regard to
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Diameter of pipes may be calculated manually or by computer programs. A computer
program gives the opportunity to optimize the district heating net much better in regard of
netcosts, pump costs, pressure and pressure limits and what if scenarios in regard to

changes in the future, for example increases in load. Practical things to have in mind when
considering pipe diameters are:

e Coincidence factor when summarising the maximum loads
¢ Future loads
e Pipe costs for extra capacity
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Ague 7.2.1-1 District system with
heafing one

Agure 7.2.1-2 District heating system with two
hedatpionts

Agure 7.2.1-3 with automatic r.p.m
by difference prossire
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7.2.2 Pressure maintenance

The pressure maintenance system shall keep a certain pressure at a reference point of the
district heating system. Variations in pressure at the reference point are caused by:

e Changes of the water volume caused by changes in the water temperature
e Variation of pumping pressure
o Leakage in the district heating system

By keeping a certain pressure at a reference point it is possible to prevent too high pressure
in a low elevation part of the network and too low pressure with possibility of boiling in the
high elevation part of the network. This usually is done by regulating the amount of water
in the district heating system.

TYPES OF PRESSURE MAINTENANCE SYSTEMS

Open reservoir

This is a system used in some district heating systems. The reservoir has to be located at a
level corresponding to the pressure required at the reference point. The system does not give
much opportunity for changes in system pressure when the system is built.

Closed reservoirs with a gas blanket
These are usually used in small systems, for example a group of buildings.

Closed reservoir with steam blanket

This gives much better flexibility in volume changes than a system with gas blanket. In
addition it can be combined with storage which gives the possibility of storing energy
during periods with low demands, for example at night, and use it during periods with high
demand. With a low steam pressure the reservoir has to be situated at a level corresponding
to the level in the reference point. With high steam pressure one is more free to locate the
reservoir, and to regulate the pressure level.

Pressure maintenance system with pumps and overflow valves

This system has the greatest degree of freedom as to where it may be located and to what
pressure level is required. The pressure pump reservoir may be either open to atmosphere or
it can have a low pressure steam blanket. It also may be combined with water treatment.
Figure 7.2.2-1 shows a principle sketch of a pressure maintenance system with pumps and
overflow valves.
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The pressure maintenance system is located usually in or in association with one of the heat
plants. It is important there is only one pressure maintenance system in the district heating
system. If there is for example two systems the result will be that one is pumping water into
the system, the other letting it out of the system. If there is a wish to have two systems
placed differently in the net it is necessary to have the same reference pressure point, and
the systems working in connection with one another. For example, when one system cannot
manage to pump enough water into the system the other will help. This is done by
connecting all pumps to the same pressure point, but the starting pressure of the pumps is
different. So, in reality it is one pressure maintenance system, but the pumps are located in
different places. It does not matter where water is let in or let out of the district heating
system. What is important is the location of the reference point (the point of constant
pressure).

When choosing the reference point be aware of the limits of the system. Also it is necessary
to make an analysis of "what happens if...". The main thing to consider is what happens if
the circulation pumps stop.

Figure 7.2.2-2 shows a pressure diagram for the pumps, pressure maintenance before the
pumps and the pressure limits represented by the two curved, parallel lines. The bottom line
may be said to represent the ground level, or atmospheric pressure, the top level maximum
pressure, for example 1.6 MPa at design pressure PN 16. If the circulation pump stops the
pressure diagram is represented by the dotted line. The system can handle this situation.
Neither the maximum or the minimum pressure line is crossed.

When the circulation pump runs it is important that there are enough margins between the
minimum and maximum pressure lines. The margins are often required to be 0.1-0.3 MPa
depending on the system and where in the system they are. The atmospheric line represents
boiling at 100 °C. If the forward temperature is 120 °C the boiling point will be 0.1 MPa
above the atmospheric or ground level line.

Figure 7.2.2-3 Shows the same situation, but the reference point of the pressure
maintenance system is located after the pump. When the pump stops the lower elevations of
the district heating net will have too high a pressure, the dotted line crosses the maximum
pressure line. Generally, if the heat plant and reference point is located in the higher
elevations of the net, the reference point should be on the suction side of the pump, and near
the pump to take care of pressure loss in the plant. If the plant with the reference system is
located in the lower elevations of the district system it should be on the pressure side of the
circulation pump.

It is also possible to let the reference point be the middle of the pressure on the pressure side
and the suction side of the pump. Figure 7.2.2-4 shows the pressure diagram for two
different pump-heights of the circulation pump in this case. The dotted lines show the
pressure diagram when the reference point is located before the circulation pump, after the
pump and as a mixture of the pressure before and after the pump. This solution may be
arranged with pressure pumps and overflow valves, but will be hard to obtain with other
systems. However, the solution should only be used if absolutely necessary. If the pressure
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maintenance system should have a failure the pressure limits may be overrun when the
circulation pump stops.

The parameter for diameter the pressure maintenance system mainly is the volume change
of the water in the district heating system. In addition comes leakage and refilling of pipes
when the pipes has been emptied.

Volume changes is due to temperature changes of the water. This occurs when:

Outside temperature is changing. The setting point of the forward temperature will
be changed, and the return temperature will be influenced.

More or less effect is put into the system than required from the customers. This
may happen after a stop in deliverance, bypasses set open in the system and other
irregularities.

Pipes has been emptied and filled up, and the water needs warming up. This usually
will be the largest demand. The important thing is for how long time the customer
can be without heat. To be taken into consideration is time for emptying and
refilling pipes, reparation of the damage, warming up the water and which amount
of water is to be warmed up. It for example means to take into consideration the
largest volume between two shutting valves. It also have to be taken into
consideration that other parts of the net may have been cooled down.

When heating up or cooling down water only the effect of the heating or cooling will

determine the capacity of the pressure maintenance pumps and the overflow valves. The
water volume only will have influence on the reservoirs of treated water.
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7.2.3 Design of pumps

When designing the pumps the following parameters have to be taken into consideration:

Pumping height

Flow

Temperature difference
Design pressure
Minimum suction height
Pressure shock

Pumping height
Maximum pumping height is set by the pressure loss in the pipes at maximum flow,
minimum pressure difference for the customer and pressure losses in the heat plant.

Flow
Maximum flow is set by the maximum coincidence effect and supply and return
temperature.

Temperature difference

Maximum temperature difference is set by the maximum supply temperature, which
depends on the type of pipes used and the customer’s return temperature and, if the
customer has a heat exchanger, the size of the heat exchanger.

Design pressure

Design pressure is set by the maximum pressure that may occur in the system and usually is
the same as the design pressure of the pipelines and other components. It is very important
to have in mind that although the pumps have been tested with a higher testing pressure
than the design pressure from the producer, they must not be exposed to the testing
pressure of the pipelines after being installed. This is due to the pump seals which
normally will not withstand the pipeline test pressure.

Minimum suction height

To prevent boiling in the pump there has to be a minimum suction height before the pump
due to pressure losses on the suction side in the pump. The temperature here has to be taken
into consideration. The suction height is the minimum height needed over of the pressure at
the boiling point.

Pressure shock

The material must be capable of withstanding pressure shocks in the water system. The
material of the housing therefore should be of steel or nodular cast iron (GGG) and not of
ordinary cast iron (GG) which may crack easier when pressure shocks occur. Corrosion
usually is no problem with treated district heating water.

The pumps may be located either in the forward pipe (after the boilers) or in return pipe, or
in both. Figure 7.2.3-1 shows the principle of pump location.
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Fgure 7.2.3-1 Principle figure of pump location

The number of pumps depends on the size of the heat plant and district heating system. It is
of course necessary to have pumps in each heat central to deliver heat, and in addition there
may be pressure boosting stations in the district heating network. The minimum number of
pumps in a heat plant should be two due to the fact it is necessary to have a spear pump. If
each should be 100 % in volume capacity has to be considered, but it will give a good
security and is often common for smaller plants. For bigger plants 3 pumps of 50 % may be
used, or for example four pumps of 33 %. If there is pumps in both return and forward pipe
the pumping height is to be divided between return and forward pumps, but the pumps of
course must be designed both in return and forward pipe for the total flow.

To prevent damage to the pump and picking items and particles out of the water it is
recommended to have a course filter in the pipeline before the pump. Especially this is
useful when starting up with new built pipeline stretches. It then can be useful to strengthen
the filter with bars. The filter must not be too fine, then the pressure loss will be too big and
the filter threads may burst. To remove small particles as magnetite it is recommended to
have a small stream through a very fine filter in parallel to the maine pipeline.

To prevent damages on the pump and net it can also be recommended to install other types
of security equipment.

A temperature feeler in the pump at the outlet which stops the pump at too high temperature
will prevent the pump to get too high temperature, or that the water in the pump starts
boiling. This may occur if the forward valve of the pump is shut. The customers then will
demand more flow, and the pump will speed up and the water in the pump start boiling if
there is no security installation.

A pressure feeler in the suction pipe of the pump which stops the pump at too low pressure
will prevent the pump to get too low pressure which may result in boiling and damage of
the pump.
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The most common pump regulation is the regulation of the rpm of the pump. To control the
flow and pressure of the pump difference pressure sensors may be installed in different
points in the network. The lowest difference pressure then will regulate the pumps. Which
point will have the lowest difference pressure will change due to the situation in the
network.

It also may be wise to install pressure sensor in the lowest and highest part of the network.
If the pressure is close to the pressure limits these signals can overrule the signals usually
used to set the flow of the pump.

To prevent water flowing backwards in the pump and causing the pump to turn the wrong
way if there is automatic start and stop of parallel pumps, it is recommended to install a
back flow preventer valve in the supply pipeline of each pump.

The working area of the pump is shown in a pump curve. Figure 7.2.3-2 shows a typical
pump curve for a district heating pump.

The pump curves show the connection between flow and pumping height at a certain rpm.
The various pumping curves show the connection at various rpm. The efficiency lines show
the efficiency at the different points of the pumping curves. When at the pump diameter the
diameter point should be at the best possible efficiency. The greater the flow at constant
r.p.m, the greater is the need of power. This is to be observed when at the pump diameter. If
the pressure drop in the pipelines is not as big as calculated the pump may need more power
at maximum rpm than calculated.

Figure 7.2.3-3 shows a pump characteristic together with a network-characteristic. The
network characteristic is represented by the dotted line. When regulating the pump to a
lower flow with rpm regulation the pumps flow-pressure connection will follow the dotted
line and usually give the best efficiency possible at lower rpm. Figure 7.2.3-4 shows a pump
with constant rpm regulated to lower flow by throttling. The network characteristic then
will change into an area where pump efficiency is less, and may cause unnecessary high
pressure and pressure difference in parts of the net.

The efficiency curves of the pump are shown in the figure 7.2.3-3. In the best points it
amounts to about 80-85 %, the rest is losses. However, most of the loss is transferred to the
water, so in reality it is not lost. But the price of this energy will be the price of the
electricity which usually is much higher than the price of the energy used in the boilers. So
it is important to have as small pump losses as possible. The loss in the motor mostly
amounts to about 2 % depending on the load. Usually it is lost to the air and will be lost if
the air is not used in a boiler.
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7.2.4  Pressure Boosting Stations

With bigger district heating nets it may be necessary to have pressure boosting utilitys in
the pipelines outside heat plants. This may be done for the following reasons:

To avoid too high pumping height in one place which may cause problems with the
pressure limits

To better adjust the pressure in the system to the geography

To reduce the pumping energy to a minimum. If only a minor part of the customers
needs high pumping height, it is not necessary to give the total flow this pumping
height.

The pump size will be influenced by the total coincidence effect of the customers and the
other parameters mentioned earlier.

The boosting utility may be located in the supply or the return pipe, or in both. Which
location to choose depends on geography and pressure condition. It will be useful to plota
pressure diagram to see the effect of the location in different situations. Figure 7.2.4-1
shows a principle flow chart of a pressure booster utility.

Figure 7.2.4-2 shows a pressure diagram for a booster utility located in the return pipe. In
this case it is important to ensure that customers in the neighbourhood of the booster utility
have enough pressure difference between forward and return pipe. The best way to take care
of this is to regulate the booster pump in such a way that it keeps the pressure difference
between forward and return pipe constant just after the pump on the pressure side.

If the pump is located in the supply pipe, the constant pressure difference has to be
measured on the suction side just before the pump. As the main pumps are usually rpm
regulated it is preferable to use a similar scheme that will follow the main pumps. It is also
wise to safeguard the pumps against too high a temperature and high and low pressures.
Filters should also be installed.



120
PUMPESTASJON TOYENHAGEN

-0 TG 0800, I '
s quref
T GS NOB8 08 &‘-E
’V_l'l
)

H

Figure 7.2.4-1: Principle flow chart of pressure booster station

P T e—
Madmum pressure Ine

NG

Agure 7.2.4-2 District heating system with ohe
heatplant and boostex station.




121

7.3 Statics

On the subject of structural calculation of district heating lines there is, in addition to the
standard literature, a series of special publications [26, 12, 44] as well as specialized
software [25]. These tend to focus on calculations for plastic jacket pipes since this
construction system demands a particularly careful design. The main issues involved are
described in Section 8.1.1.

Two special issues of statics - design against materials fatigue and bearing friction - are
dealt with below.

7.3.1 Design Against Fatigue Failure

In certain structural calculations it has been shown to be advisable and, at times,
unavoidable to assume both dead loads and vibrational loads. This means calculating not
for yield strength but for fatigue strength. Computational situations of this type arise both
for plastic jacket pipes as well as for compensators. The engineer performing the
calculations must adopt assumptions regarding the number of stress cycles during the life of
a line.

District heating lines undergo a large number of stresses of small amplitude but very few of
full amplitude, such as might result from a slow shutdown. (Exceptions are possible!) A
basis for standard design has been established in a number of district heating studies [26,
44] and a comprehensive analysis is underway in Sweden at this time [43].

The reference value assumed today for a standard design is 100 to 200 full amplitude stress
reversals over the entire life of a line (partial amplitude reversals converted to full
amplitudes). The future will show whether this value for transmission mains is too high or
whether, for certain service lines, this number of stress reversals is perhaps too low.

In the absence of any new results to the contrary, the assumption of stress cycle values of
N=100 to 200 seems appropriate for the design of lines with a normal temperature regime.
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7.3.2 Friction in Pipe Bearings

Systems with plastic jacket pipes also have pipe supports and anchor points, such as at line
utilitys, in shafts, on aboveground line sections, etc. The anchor point forces are
determined from the friction forces in the pipe bearings.

Friction forces are calculated using the friction coefficient for the corresponding bearing
materials pairing. Experience has demonstrated that the friction coefficients commonly
employed in machine building are too low for district heating lines. For the special
conditions (dirt, rust, short and slow movement) of pipe supports the comparatively high
values in Table 7.3.2-1 should be assumed.

Materials pairing Friction coefficients
Steel/steel 0.5
Steel/ fiber cement 0.6
PTFE/stainless steel, dirty 0.4
PTFE/stainless steel, clean 0.1
PTFE/stainless steel, measured values up to 0.2
DV roller supports/stainless steel,

dirty 0.2
DV roller supports/stainless steel,

clean 0.1
Polyamide/concrete 0.6
Polypropylene/steel or cast iron 0.6

Table 7.3.2-1: Friction coefficients for pipe bearings in district heating lines
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Economic insulation thickness

In addition to the global values discussed in Section 5.4 regarding system losses, something
should now be said about selecting the economic insulation thickness for a line. The
economic insulation thickness is defined as the thickness that results in the lowest overall
cost for the line.

A complete consideration of costs associated with heat insulation should not be restricted
exclusively to the cost of the insulating material but must also draw in those components of
construction costs that derive indirectly from the thickness of the insulation, such as the
material excavated to provide a wider trench. The costs of heat losses must also be
examined. The cost consideration must cover the entire useful life of the line and so
include increases in energy prices and construction costs. Such a calculation is very
laborious and to date has seldom been undertaken to this extent.

Manufacturers offer three series of insulation for plastic jacket pipes, that is, piping with
three different thicknesses of insulation. The planner must make the most suitable
selection. But in some situations the client can specify any desired insulation thickness
without supplier restrictions. This becomes possible in the case of aboveground lines, in-
duct laying and in large projects with plastic jacket pipes when the quantity ordered is large
enough to justify special dimensions.

In engineering practice optimization calculations are always performed for transmission
mains. Usually the thickness actually provided by the supplier is more generous than the
calculated amount rather than less.

Some of the key variables that are used in optimizing insulation thickness are:

physical quantities for calculating heat losses
costs associated with pipeline construction
heat costs

capital market developments

service life

Figure 7.4.2-1 shows the results of calculations for the flow and return lines of a particular
pipeline system; the price of heating is used as a parameter. For the return line there were,
on average, fewer optimum insulation thicknesses, although the variance in the decisive
cost factor, the capital value, between flow and return lines was only ~_%. For this reason,
the supplier decided to simplify on-site work and storage conditions by employing the
same pipe material for both flow and return.
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Pipeline Laying Methods

The preferred method for laying district heating pipelines is underground. Small twinned
lines are usually routed in the sidewalk area. Greater diameters must be laid beneath the
thoroughfare.

Today the buried plastic composite jacket pipe is the most common construction technique.
Other methods include the steel-in-stee] pipe and pipe laying in a concrete duct.

Aboveground lines, which include installations in the basements of buildings, in parking
garages, etc. often cost less to build than buried lines and are also accessible in operation.
However, aboveground lines are more expensive to maintain.

Plastic Jacket Pipe

There are four principle reasons for the almost exclusive use of plastic jacket pipes:
L. Lower construction costs

From the cost diagram in F igure 6.2.3-2 one can clearly see the difference in
costs of the plastic jacket pipe as compared with other buried systems.

2. Lower insulation rates

Damage in district heating lines is significantly less in comparison with earlier
construction techniques. The plastic jacket pipe, which has been in use for more
than 20 years, promises a long service life.

3. Reduced space requirements and shorter construction time

Reduced spaced requirements are particularly important along narrow city streets
and streets with numerous other lines. A short construction time is a further
advantage.

4. Appearance of simplicity

The simplicity of a plastic jacket pipe unit, as it appears to an observer, is certainly
a factor in deciding on its use. This apparent simplicity, however, should not lead
to casual handling.

For example, the extent of stresses and strains in the line depend on the backfill
and the compaction of the bedding material. A deep cover means large
[compressive] loads but little [tensile] strain. A shallow cover means less
[compressive] loading and greater [tensile] strain. The effect of groundwater on
stresses and strains in the plastic jacket pipes must be taken into account.
Greater loads occur at angular deviations and take-offs.
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These and a number of other problems demand special expertise in working with plastic
jacket pipe systems in order to achieve technically competent and cost-effective pipe laying.

Description, Function, Statics
The following description covers only the main features of the system.

The plastic jacket pipe consists of a steel medium pipe and a jacket pipe of polyethylene
(PE), the two joined by a friction-type connection over an inner layer of rigid expanded
polyurethane (PUR) foam. Sleeves are used to join the individual lengths of jacket pipe.
The steel pipes are welded together. Figure 8.1.1-1 shows the typical pipe configuration.
In the ground the plastic jacket pipe can undergo a certain displacement due to heating and
cooling of the medium. But the medium pipe and jacket pipe always move as a unit as a
result of their rigid connection.

Plastic jacket pipes, sleeves, fittings and valves are designed to European standards (see
Section 10.3).
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In the consideration of static loads on the plastic jacket pipe a fundamental distinction must
be made between loads on a straight pipe and loads on fittings. We will first consider the
situation in the straight pipe.

In the case of a buried pipe, change in length in the composite pipe is complicated by the
fact that each axial movement produces substantial frictional forces between the jacket pipe
and the soil. Taking an exposed pipe end as starting point, these friction forces accumulate
with pipe length. They reduce the freedom of movement the pipe would otherwise have
and can become so great in long runs that movement on a portion of the line is completely
suppressed. This motionless pipeline section is referred to as the stick zone and forms a so-
called natural anchor point (NAP). Figure 8.1.1-2 illustrates this process as a function of a
rise in temperature AT.
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Figure 8.1.1-2 Length change and stress in response to a given temperature rise AT
Notes to Figure 8.1.1-2:
1. Change in length of composite pipe with all degrees of freedom, that is, with
frictionless bedding;
2. Change in length when buried;
3. Axial compressive strain in steel pipe due to friction between jacket pipe and

soil.
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Diagram no. 1 illustrates the change in length AL over a length of line L as a result of
temperature-induced movement of the pipeline for the theoretical case where there is no
restriction of movement due to ground friction. Due to the absence of frictional force full
theoretical elongation results; there are no axial loads in the steel pipe.

Diagram no. 2 shows the movement of a buried composite pipe for the same line length.
Frictional forces arise in the slip zone, the zone in which pipe movement occurs, and these
forces accumulate with increasing pipe length (see Figure 8. 1.1-2). At pipe length G they
reach a value equal to that of the force producing movement in the steel pipe. From this
point on no more pipe movement is possible since the forces producing movement and the
forces hindering movement are in equilibrium.

Compressive stresses arise in the steel pipe as a result of the restricted movement. In each
individual case the steel of the medium pipe must be tested for its ability to withstand the
loads. In a conservative static design an allowable straight length of laid pipe is calculated
from the nominal diameter, cover depth and operating temperature at which the frictional
force produces a load equal to the rated value of the pipe material in accordance with ISO
9329-1 or ISO 9330-1. A compensation element must be provided for at least by the time
this line length is reached (see Figure 8.1.1-3).
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Figure 8.1.1-3.Reduction of compressive loads by limiting line length, such as between
compensators.

Another possibility for reducing the loads produced and, thus, exceeding the allowable
laying length lies in preheating the composite pipe. In this method the line is preheated in
an open ditch and then buried once the desired temperature has been reached. In this way
the stress-free state is shifted to another operating state and the compressive stress at
maximum allowable operating temperature lessened. As a result a cold line produces
tensile stresses instead of the stress-free state that would prevail in the absence of
preheating (see Figure 8.1.1-4).
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Figure 8.1.1-4 Example of axial stress in the sticking zone as a function of medium
temperature.

The preheat temperature is a function of the maximum demand operating temperature, the
potential for energy provision and the preheating technique employed. The preheat
temperature is frequently ~ 70°C, corresponding to a maximum operating temperature of ~
130°C. Lines can be preheated a section at a time, as required by local conditions. In this
case, the stresses produced at section boundaries require careful attention.

To avoid exceeding the allowable axial load of 190 MPa in a straight pipe, lines with a
length greater than the allowable laying length which are laid without preheating should not
be used at operating temperatures greater than 90°C. If the maximum of 90°C is not
exceeded, straight lines can be laid to any length without preheating and without exceeding
the allowable straight-pipe axial load of 190 MPa.
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New development efforts are aimed at permitting expansion in excess of 0.2% for loads on
bends, tees, and so forth. This seems possible since there are few full-amplitude expansions
over the life of a district heating line and the majority of stresses are caused by secondary
loads. This means that instead of designing to reduce the high stress amplitudes to the
thermal yield limit, a fatigue analysis is undertaken for the totality of live loads. This is
required also by the fact that improved methods of calculating bedding forces in the ground
produce much higher stresses than the previously simplified calculation methods [25].

Another development approach - so-called cold laying - attempts to exceed permissible
straight-pipe axial loads in order to dispense with preheating. The line prestresses itself the
first time it warms up once the limit of elasticity is exceeded.

Range of Application

The permissible sustained temperature for plastic jacket types with the conventional CFC
blown foams used up to now has been restricted to 130°C. Moreover, manufacturers extend
the warranty up to 140°C so long as the duration of sustained temperatures over the course
of a year is not exceeded.

~135°C £ 500 hours
~140°C £ 400 hours

These values are also valid for the so-called soft or flexible foams (H-FC-and H-CFC) and
the CFC-free foams.

Plastic jacket pipes should be laid with a cover of at least 0.5 m. Smaller values require an
appropriate indication of ring bending resistance while values higher than 1.5 m require an
indication of shearing strain resistance for the PUR foam.

Connection Technique

Sleeves serve as a connecting element between two jacket pipe ends. External forces acting
on the sleeves must be absorbed. This is true also for forces applied to the sleeve edges

due to soil resistance in the slip zone. Shifting of the sleeves and their seal on the jacket
pipe must be prevented under all line operating conditions.

The sleeve must have reliable watertightness. The seal must be unaffected by thermal
effects due to the temperature of the medium and simultaneous external and internal
mechanical effects.
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Because of the frequently inconvenient construction site conditions, work on sleeve
connections must be performed with particular care and appropriate supervision. Improper
installation can impair the quality of the connection and threaten the operational safety of
the entire system.

There are basically two types of sleeves: the shrunk-on type, where the gap between the
jacket and sleeve is sealed by a shrunk-on collar, and the welded sleeve type. Various
welding techniques are employed for the latter. All work on sleeve connections must be
performed by specially trained personnel. Manufacturer's instructions must be on hand and
closely followed.

When shrunk-on sleeves are used care must be taken that the sleeve and jacket pipe are
clean and dry. This is also true for pre-installed slip-on couplings and shrinkdown tubing.
For welded sleeves the work must be done on site with particular care or the life span of the
connection will be jeopardized. Particular measures must be taken to guard against weather
effects. (The key requirements for materials, welding methods, welding personnel and
product quality are covered by a German guideline (see Section 10.3 - DVS 2207, Part 5).

The PUR foam in piping elements must be dry. Wet PUR foam must be removed from
piping during construction. If large areas of foam become wet, entire pipe units must be
replaced. In addition, the factory-installed PUR heat insulation on pipe ends must be
shortened by ~ 20 mm to permit a better contact between site foam and the piping foam
material. The PUR foam components required for sleeve site foam have a limited storage
life. The expiration date must be visible on their containers. Containers that are past their
expiration date must not be used. The manufacturer's recommendations regarding working
temperature and humidity limits for the PUR foams must also be heeded, and the work
interrupted or halted if necessary. Only small quantities of PUR foam should be allowed to
protrude from gaps between sleeve and jacket pipe during filling of the sleeve space. Foam
ingredients must be mixed carefully. Accident prevention regulations, especially when
working with liquid foam components, must be observed.

If shrinkdown tubing is applied at both ends of the sleeve and at the filling orifice, care
must be taken to ensure an adequate temperature and uniform temperature distribution. The
temperature required for shrink-heating should be indicated, if possible, by a colour change.

System Monitoring and Leak Location

The early detection and rapid location of leakage points is important in pipeline systems.
Plastic jacket pipes are to a large degree resistant to water diffusion. Even small quantities
of moisture in the heat insulation space, such as that left over from the construction phase,
will not be able to escape once the line is in operation. Even the smallest leaks, especially
in the medium pipe, must be promptly detected and eliminated since they could wet longer
line sections over time.
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Pipeline monitoring and leak detection systems are available that can detect moisture in
plastic jacket pipes. The required tracing or control wires are embedded in the heat
insulation foam during fabrication of these pipe systems.

When the initial purchase of monitoring systems is contemplated it should be kept in mind
that changing from one monitoring system to another is currently very difficult. The
purchaser should avail himself of presentations and references to be certain that a
monitoring system is reliable. The particular characteristics of such systems should be
considered with a view to later expansion plans when the district heating system is first
being planned.

Special Types of Plastic Jacket Pipe Systems

In addition to the standard pipe, two other pipe laying methods are employed:

1. Aquawarm
For maximum operating temperatures to 130°C
Range of nominal diameters: DN 10 - DN 100
2. Composite systems with plastic medium pipes
For maximum operating temperatures to 90°C and maximum operating pressures to
6 bar.
Range of nominal diameters: DN 20 - DN 80

8.1.5.1 Aquawarm (and comparable products)

For a description of this system, the reader is referred to the manufacturer's documentation.
The basic differences between Aquawarm and plastic jacket pipes are noted below:

* Pipe structure
Around the copper medium pipe is a heat-insulating layer of compressed glass
wool which is covered by a corrugated casing of HDPE.

* The pipes are flexible, are delivered either as packages or coils and are hard
soldered together.

* Up to DN 50, inclusive, the product is available either with single or double
pipes (two medium pipes in a single jacket pipe).

. hange in length of Aquawarm pipes in response to operating temperatures is
compensated for by laying the pipes in an undulating pattern.
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* With an appropriate selection of fittings both service lines and distribution mains
can be laid with minimum depth of cover. The insulation on the prefabricated
fittings consists of PUR foam. The fittings serve at the same time as anchor
points in the system.

8.1.5.2 Jacket Pipe Systems with Plastic Medium Pipes

At maximum operating temperatures of 90°C and pressures £ 6 bar plastic medium pipes
can be used in place of the steel pipes in conventional district heating lines. This can result
in substantial cost savings as compared with other laying methods.

Recent developments have opened the prospect of medium pipes made of crosslinked
polyethylene (XLPE) and, possibly, polybutylene (PB). The market is clearly headed in the
direction of XLPE, the sales of which are many times greater than those for PB.

When a district heating system is to be extended to a new service area, the decision to use
plastic medium pipes will be clear when an economic comparison (different pipe diameters
in different temperature ranges, costs of an additional heat exchanger utility, costs of the
different service connections, etc.) demonstrates an advantage at operating temperatures £
90°C.

Plastic jacket pipes in principle have the problem to be not totally gas-proof. From this fact
results the risk that oxygen may diffuse into the heating water and causes corrosion to the
steel components of the heating system.

On the other hand water vapour can diffuse into the insulation and condense, thus leading to
a loss of insulation effectiveness. Lack of long time experience made it difficult during the
past, to assess the resulting problems. In the meantime positive operating experience is
available with new pipe system, which enables the risk of gas diffusion to be calculated.

The structure of XLPE pipes is described briefly below. The reader can find detailed
descriptions and studies in the IEA report [23], which also contains comparative data on
installation costs as compared with plastic jacket pipes.

The products differ in the structure of their oxygen diffusion barrier, which is either applied
as a thin extruded layer of EVAL or consists of aluminum foil glued on, with fabric tape for
Support.

The heat insulation consists of flexible PUR or PE foam in one or more layers. In some
cases the thermal insulation consists of compressed glass wool.

Pipe connections are generally made with clamp bolts and push-on couplers.
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Other Laying Methods

Besides plastic jacket pipe there are three other systems in use, namely

° steel-in-steel pipes,
. aboveground lines and
. concrete ducts.

These are described in a general way below. Aboveground lines can only be installed
where acceptable within the city landscape. Pipe laying in concrete ducts is the method that
has best stood the test of time, but is also the most expensive.

Steel-in steel pipes

The steel-in-steel pipe system employs two pipes of steel in a concentric arrangement with
thermal insulation in the annular gap between the pipes. The inner pipe serves as the
medium pipe and the outer provides moisture protection and strength for the line. The
expansion movements of the medium pipe are absorbed inside the jacket pipe. When pipe
diameters are small two or more lines may be incorporated in a single casing.

Steel-in-steel pipe offers advantages on line sections with few take-offs, and so is
particularly useful for large-diameter transmission mains. Since a steel-in-steel pipe offers
reliable moisture protection, this system has proven to be particularly useful when pipe is
laid in groundwater. It has also become a standard system. One advantage of this system is
that the annular space provides good monitoring opportunities.

On small and medium-diameter lines the steel-in-steel pipe method is normally more
expensive than the plastic jacket pipe system. On large-diameter lines it may be more cost
effective, depending on market conditions. The cost advantage of plastic jacket pipes in the
range of diameters up to DN 200 is about 20 - 40 %, in the range DN 500 - DN 700 only 0 -
20 %. Unfavourable conditions like ground water shift cost relations in favour of steel-in-
steel pipes.

The steel-in-steel pipe offers the following advantages as compared with other systems:

closed system without joints

small space requirement

rapid construction time due to prefabrication
suitability for high flow temperatures.

L K 2B B 4
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The advantage of the steel-in-steel pipe approach lies in the possibility of achieving
perfectly tight connections between prefabricated units on site and monitoring the quality of
these joints by means of appropriate equipment.

Reaction forces resulting from suppressed thermal expansion may be absorbed directly by
the jacket pipe, necessitating the use of concrete abutments. Figure 8.2.1-1 illustrates the
structure of the system based on a bearing and an anchor point.

CRATRS

PN

Figure 8.2.1-1:Cross section through steel-in-steel pipeline

a) Axial roller-type bearing b) Anchor point;

1 Medium pipe; 2 Heat insulation; 3 Jacket pipe; 4 Corrosion protection; 5 Metal plate; 6
Jacket pipe anchor welded in; 7 Chamber plate; 8 Heat insulation element; 9 Heat
insulation.

The medium pipe is made of steel, usually St 37.0 with conventional [expansion]
compensation. In systems without compensators St 52.0 is often required (see also the
section on compensation). The thermal insulation consists of pressure-resistant shells. The
jacket pipe is made of St 37.0 with an external corrosion protection of bituminous glass mat
or polyethylene.
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The bearings for the steel-in-steel pipes are predominantly star-shaped, restraint-type
bearings, either sliding or roller. As noted earlier, the diverting of forces is not a problem
with the steel-in-steel pipe method, and so simple sliding bearings are adequate in many
cases. Roller-type supports may be preferred on longer runs depending on the system and
on installation considerations.

Bearings should be designed to prevent undesirable thermal bridges arising since the outer
cover of jacket pipes is only suitable for temperatures to a maximum of 50°C. For this
reason a material with low thermal conductivity, such as aramid fiber-based tape, should be
packed between the medium pipe and the bearing strap.

Anchor points transmit to the jacket pipe the forces resulting from restrained thermal
expansion or from compensators plus friction from the medium pipe. Anchor points should
also be built to prevent excessive heat flow from the medium pipe to the jacket pipe. For
this reason, pressure resistant blanket insulation should be installed between the medium
pipe and steel plates welded on the jacket pipe.

Sufficiently large vent openings must be provided on anchor point plates to allow
evacuation of the annular gap.

Compensation

There are two basic methods for absorbing medium pipe expansion:

1. conventional compensation with expansion units or compensators;

2 compensator-free cold stretch systems.

In the first method the medium pipe is allowed to move freely and any eventual expansion
is absorbed by axial or other compensators built directly into the length of steel-in-steel

pipe.
On long and straight runs the compensator-free method can be particularly cost effective.

For this purpose the medium pipe is mechanically lengthened, usually between two anchor
points, to the maximum allowable limit at laying temperature and welded to the jacket pipe.
This results in a compressive force being applied to the jacket pipe that corresponds to the
tensile force in the medium pipe.

Where this method is used St. 52.0 is usually the preferred material for the medium pipe. In
any case, expansion at line section ends (tie-ins to shafts or buildings) arising from the
movement of the jacket pipe should be considered and precautions taken to offset it.
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Passive Corrosion Protection

Polyethylene and bituminous glass mat have already been mentioned as suitable materials
for protection against external corrosion.

Specifications for polyethylene jacketing material and appropriate thickness layer can be
found in DIN 30670. A somewhat greater minimum layer thickness is recommended for
the jacket pipe. The maximum permissible operating temperature for the jacketing is 50°C.

Bituminous jacketing material is covered by DIN 30673. It consists of a primer and wrap
layer around a glass mat of ~ 4 mm thickness for the basic variant and ~ 5-6 mm for the
thicker variant. The bituminous material is recommended for elevated temperatures
(tropical quality, type E6). Over-the-ditch insulation of weld joints and piping segments not
preinsulated, such as elbows, requires particular care inasmuch as it must be done on site.
Anticorrosion bandages and shrinkdown tubing for over-the-ditch insulation are covered by
DIN 30672. 1tis recommended, prior to backfilling, that the j acketing be examined for
holidays using an insulation-test device with a test voltage of 20-25 kV.

Cathodic corrosion protection (active corrosion protection)

Successful use of cathodic corrosion protection demands special expertise.

Evacuation

A vacuum must be created in the annular gap between the jacket pipe and medium pipe.
Evacuation draws moisture out of the heat insulation and so not only prevents internal
corrosion but also boosts the insulating efficiency by 20-25%. This is independent of
whether the evacuation is ongoing or one-time.

Depending on cost, the leak-tightness of a line section can be monitored by appropriate
vacuum monitoring devices and leaks recorded and located.

In creating a vacuum, structural solutions are required to isolate individual lengths of line
and to maintain the vacuum-tightness of the space between the medium and jacket pipe at
connections to shafts and buildings.

Laying technique

Several steel-in-steel pipe units (length of units about 12 m) are placed to the right and left
in a prepared trench.

Jacket pipe ends are joined by careful fitting or by means of fitted half-shells, taking care to
prevent hollow welds, and the longitudinal seams must be made the load-bearing seams.
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When jacket pipes are being welded the thermal insulation must be protected by zinc-coated
sheet metal or fire-resistant glass fiber mats.

The pipes are laid on a bed of sand and completely covered in sand. Both the sand bed and
haunching must be compacted.

The medium and jacket pipes of each line section must be welded between anchor points
prior to prestressing or cold stretching.

Crossing of thoroughfares

Besides the complete systems, short sections may require special measures to install casings
as dictated by local conditions. Usually, to obstruct traffic as little as possible when
crossing main roads, expressways and railway lines, one or two casings are installed first
and the surface restored. The district heating line is then inserted.

The casing is made of steel or concrete depending on the placement method (laying, boring
or thrusting) and size (accessible or inaccessible). As for corrosion protection, the same
applies as for the jacket pipe in the assembly-unit method. The annular gap between the
casing and line is ventilated, such as by way of adjoining shafts. For the jacketing of steel
pipes polyethylene is preferred because of its dimensional stability. For cathodic corrosion
protection galvanic anodes are suitable on these short line lengths.

Aboveground lines

Aboveground and overhead lines may be installed not only in open areas but also in the
basements of residential buildings, parking garages and other buildings along the street.
This method saves on excavation costs and so can more than compensate for the extra
expense of such lines, such as fitting in to available space, increased thermal insulation, etc.
Installation of aboveground lines is usually easiest on industrial property; on city
thoroughfares close cooperation is required with architects and city planners.

Running lines through basements requires the agreement of property owners. There are
examples of housing developments where more than one third of the required line length
was installed in the basement of buildings. Basement laying is only possible for smaller
lines, and additional thermal insulation is sometimes required.

Lines in open air are either set on concrete pedestals, steel platforms and concrete or steel
stanchions or may be suspended. The distance between support elements is based on the
allowable span. This can be increased by longitudinal bars atop supports. A special
construction involves supports with a pivot on a foundation, so-called pendulum supports.
For esthetic reasons their movement capability is little used.
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In the case of exposed lines on bridges or in buildings the transmission of forces by pipe
restraints must be taken into account. The capacity of the building or bridge to absorb
forces is often quite limited, so that efforts are made to reduce the line's frictional forces by
means of special hangings or by incorporating roller-type supports or employing low-
friction materials on bearing surfaces.



142

Figure 8.2.1-1: Aboveground line on a supporting wall

Figure 8.2.2-2: Aboveground line on a shore road.
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8.2.3 Ducts

Concrete ducts fulfill the mechanical and moisture protection functions of steel pipelines.
Special duct shapes and designs are employed for use in groundwater. Since it is normal to
take precautions against surface water or moisture, ducts are usually designed with a
gradient of 1-3 mm/m between shafts.

Ducts are built of ready-mixed concrete, site concrete or a combination of the two. The
most common design is a duct with a rectangular cover on a base of site concrete (see
Figure 8.2.3-1). In addition, a U-shaped duct made of site concrete is common and is
especially useful for protecting against groundwater. For a long time a double U duct was
used in Scandinavia and was standardized as a modular system. It included pipe bearings,
branch connections, fittings, etc. (see Figure 8.2.3-1, no. 3).

For reasons of cost duct dimensions are as small as possible. In covered ducts a clearance
of 3 to 6 cm is provided between pipes on the thermally insulated line and between pipes
and the duct wall. In U-shaped ducts the clearance around the pipes must be ~ 6 cm to
allow insulation to be installed. If thermal expansion can occur across the pipe axis, the
clearance is increased accordingly. The clearance between insulation and base is ~ 10 cm to
forestall the wetting of insulating material in the event of water ingress.

The site concrete base of the covered duct is usually reinforced. Expansion joints are
incorporated into the base at 20 to 30 meter intervals to absorb thermal expansion. The
sloping base is smoothly finished to allow water runoff to the next shaft. Sectional steel,
gray cast-iron plates, clinkers or the concrete base itself serve as pipe supports. They must
not hinder water drainage.

Horizontal frictional forces are transmitted from the bearings to the duct base, and these
forces are further transferred to the ground by friction. When greater horizontal forces are
foreseen, it may also be useful to integrate anchor points into the duct base.

As an aid in installation, the base of the duct is contoured on the bearing surface on which
the concrete cover rests, depending on joint configuration. In order to provide a
functionally sound seal for transverse joints, the face of the duct covers has a Y or other
shape. To reduce the number of transverse joints, covers of longer length are often used,
although this will in turn complicate installation. Cover lengths of 0.5 to 4 m are common.
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k. Duct with rectangular cover
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Fig. 8.2.3-1 bis 8.2.3-3: Different shapes of ducts

4 Support plates (cast iron)
5 Duct base (concrete)
6 Concrete cover

8 Steel pipe

9 Lateral pipe guide

10 TOK band

11 Lower concrete inverted U
12 Sliding bearing

13 Drain pipe
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Special Components of District Heating Lines

Expansion movements and operational characteristics of district heating lines demand
special structures and components. Four important components are discussed in some
detail below.

Pipe Restraint

Pipe restraint devices must ensure faultless alignment guidance of pipes over the life of the
line. This function must not be impaired by adverse operating conditions such as dirt and
corrosion. In the event individual pipeline systems do not call for special pipe alignment,
some time-tested solutions are dealt with below. Pipe restraints are not standardized
components but are custom designed for a particular purpose. It would be helpful to have a
general concept for pipe restraint for a pipeline and to standardize the bearings.

The bearings are prefabricated from standard parts. Figure 8.3.1-1 shows a design for an
alignment support that can be used both as a sliding-type and without axial guidance with
little modification. A support post (Figure 8.3.1-2) is often used as an anchor point on
small lines. For large lines more massive structures must be used. Due to their low friction
coefficient roller-type bearings are particularly useful for large lines. These are generally
obtained prefabricated.

The interval between pipe supports depends on the section modulus of the pipe to be
supported, the weight of water in the line, the thermal insulation, the line gradient and, in
the case of aboveground lines, on snow and wind loads. Consideration must be given to
permissible deflection and stresses. The support interval can also be influenced by
susceptibility to vibration and the load-bearing capacity of available support points. Table
8.3.1-1 gives approximate values.

DN Support interval [m]

25 1.7

50 2.9

100 4.4
200 7.0

300 8.7

500 11.1

Table 8.3.1.-1:  Estimated values for support intervals on water-conducting district

heating lines (construction material St 3.7, normal wall thickness, max.
150°C)
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Figure 8.3.1-1: Alignment bearing consisting of standard structural shapes

Figure 8.3.1-2: Anchor point designs.
1 Anchor point of tubular design
2 Anchor point of structural steel
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8.3.2 Compensation

To compensate for thermal expansion L, U and Z-shaped line guides or prefabricated
expansion units, compensators, are used. Natural expansion absorption as an aspect of line
layout is the least expensive and is easier to implement the smaller the line. On large lines
the thrust of expansion units is often so great that it cannot be accomodated by the layout.
For practical convenience prestressed expansion compensators are incorporated.

Compensation should be considered as part of pipeline statics. For reliable pipe alignment,
guide bearings should be provided either side of the expansion unit. The bearings must not
result in unacceptable bending moments in the expansion units. U compensators must
therefore be able to move freely at their crown.

Single and multiple wall corrugated pipes are used as compensators. Single-wall units,
while more robust, are less elastic than the multiple wall type. The bellows consist of
stainless steel and are designed for a given fatigue strength (see also AD code of practice B
13) taking into consideration the number of deformations anticipated. With axial
compensators subject to inner pressure the total axial force resulting from inner pressure
and bellows cross section must be diverted through the anchor points.

Articulated compensators offer good capabilities. The angular movement of the bellows
combined with strain relief make it possible for them to absorb large expansions in a small

space. Figure 8.3.2-1 shows some typical examples.

Other types, such as gland, flexible rubber or ball joint articulated compensators, have not
proven suitable for district heating systems.

axial compensator
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Figure 8.3.2-1 Typical exemplar for axial and articulated compensators
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8.3.3 Valves

Valves are required to close and isolate line sections to allow new connections or repairs.
They serve exclusively for shutting off flow and are rarely used for flow restriction, for
which they are ill-suited due to their closure characteristics. The special demands on
district heating valves derive, of course, from their use with hot water. Although the valves
are only seldom called upon (perhaps once a year) they must nonetheless remain in
operational readiness at all times.

In order to minimize operating costs of a district heating system with its multitude of
valves, low-maintenance valves that are resistant to fouling are preferred. They should have
low pressure loss and small dimensions. In the past valves were always installed in shafts
or other structures so as to be accessible, but today they are built directly into the ground.
Figure 8.3.3-1 shows an example of a line cut-off with venting installed under a common
shaft cover of 700 mm diameter. Figure 8.3.3-2 shows a venting valve under a valve box of
the type used for ventilating large pipelines.

The valves must seal on both sides. Changes in the cross section of flow in valves can
cause pipe noise. The risk of noise increases with increasing flow velocity, that is, with
decreasing cross section of opening.

Slide valves, globe valves, ball valves and plug valves as well as butterfly valves are used in
district heating systems. Globe valves and plug and ball valves appear to be best for small
lines. For very large lines the butterfly valve is often preferred to the slide valve because of
its smaller size. Plug and ball valves come with plugs of three shapes - conical, cylindrical
or spherical. Those with conical plugs are not used because they tend to seize; cylindrical
and spherical types are used up to approximately DN 500. Butterfly valves remain
convenient in size even on large lines and increasingly are being used for diameters £ DN
200 as well. Only strong materials are used for valve housings.

Unless a valve is small, the stem can only be gear-controlled whether the valve is electrical
or manually operated. This automatically produces slow response times that prevent abrupt
flow interruptions. Response times are generally on the order of a few minutes. To get
around overly long response times, designs call for two operating speeds, the slower speed
being used, for example, closure for the last 20° of opening.

In the line the valves should not be subjected to any severe forces or moments. Since it can
be advantageous, especially in plastic jacket pipelines, to transfer the forces in a pipeline
through a valve housing, appropriately reinforced valves have been developed.
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8.3.4 Shafts

On district heating lines various accessory equipment is housed in underground shafts.
Because of the high construction costs, efforts are made to minimize shaft construction by
installing valves directly in the ground or extending the stem to street level so that the shaft
no longer needs to accomodate a person. It can also be advantageous to incorporate the
shaft into anchor point construction.

District heating shafts are primarily made of site concrete or assembled from modular units.
For reasons of work safety, shafts must be provided with sufficient space for access and
work.

The shaft cap is usually prefabricated and can be removable or furnished with an access
opening. The cap is particularly at risk from moisture since it may come into contact with
condensation or surface water containing road salt. For this reason, concrete with low water
permeability is used, such as water-impermeable concrete B 35 with the metal
reinforcement protected by 4 cm of concrete. Another practical protective measure is to
seal the cap with a plastic coating.

The shaft entrance is designed to allow ventilation while preventing the entry of surface
water and obstruction of street traffic. Also for reasons of work safety the shaft is fitted
with a 700 mm diameter cover and permanently installed ladders. A pump well is usually
installed at the bottom beneath the entrance.

Firgure 8.3.4-1 shows an example for a shaft in top view and cross section view

Figure 8.3.4-1:  Valve shaft
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8.3.5 Signal Cable

8.4

Modern district heating systems require electrical transmission of measurements as well as
warning, malfunction and control signals for measurement and control purposes. For this
purpose it is useful to install an appropriate cable line as the heating line is being built. A
telephone line for internal use is also often installed. Incorporating an appropriate signal
cable is more cost effective than signal transmission over public telephone lines.

Measurement and control functions in district heating systems will become increasingly
important. Electronic monitoring of pipelines is virtually mandatory today, and
transmission for heat metering purposes will become more common. The increasing
refinement of system operations and ongoing automation by means of centralized control
equipment will push up costs.

Most often, multi-wire signal transmission cables are laid simultaneously with the heating
line. At the very least, however, empty conduit pipes should be placed in the trench during
construction of larger lines so that suitable cables can later be inserted. An appropriate
concept should be developed in due course.

Thermal Insulation

Heat losses in the system are unavoidable. Since the choice of insulation thickness
influences the pipeline and trench cross section, thereby affecting pipeline construction
costs, an optimization process is followed in determining the thickness of insulation, as
described in Section 7.4. Fibrous materials have found wide application as insulation in
ducts, aboveground lines and steel-in-steel pipes. Because of its low thermal conductivity,
PUR high-density foam is installed in plastic jacket pipes. Experience to date suggests this
foam will have an adequate useful life.

Calculations indicate that heat losses due to ventilation of concrete ducts are small in
comparison with heat lost to ground. Moreover, detailed considerations of total heat
transport from heating medium to ground indicate that the ground itself provides substantial
insulation, especially if water content is low and soil particles are of appropriate size.

In aboveground lines temperatures in the insulating material must not fall below dew point
under any circumstances. No similar risk exists with underground lines, not even in
ventilated ducts. Special measures should be taken for aboveground lines, as appropriate,
where the cladding may be subject to weather-related strong temperature changes. Leaving
an air gap of about 15 mm beneath the cladding for ventilation and openings on the
cladding underside have proven useful in this regard.
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Pipe restraints have a considerable influence on heat losses in a line. Since it is not possible
to easily model heat losses from general parameters, a decision must be made in each case
whether special calculations for this purpose should be undertaken.

Special physical calculations of heat losses have been undertaken for numerous
configurations and components. Each individual case can be calculated to the desired
precision as required, but such calculations, such as with finite element methods, can be
laborious.

Tests, Commissioning

During pipeline construction it is normal for 10% of weld joints to be inspected, and up to
100% on critical sections.

In addition, leak and strength tests are also usually performed. Leak testing usually
involves air under inner pressure or vacuum using a vacuum gauge. Strength testing is done
with water at at least 1.3 times maximum operating pressure, or at least nominal pressure.
Caution should be exercised with water pressure testing if there is a risk of freezing or if the
line is exposed to strong sunlight.

Once laid the pipeline should be flushed prior to commissioning. The flush water is then
drained off and the line filled gradually, by sections, depending on the capacity of the
available water supply, in such a way as to allow entrained air to escape.

The stratification of warm and cold water that can occur during the startup process should
be avoided by a sufficiently large water flow.

As in the case of safety testing, the line should be tested if possible under maximum
pressure and temperature before approval for operation is given. The acceptance test
procedure is recorded, the necessary improvements noted, and the latter are carried out in
accordance with an agreed schedule.
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Typical sequence for implementing construction work associated with
a district heating project

For reasons of efficiency, a largely standardized sequence of procedures has evolved for
planning and implementing the construction work needed in connection with district heat
delivery facilities. All that is needed is to fine tune the details of the standardized
procedure in order to match it to a specific construction project. A procedure of this type
is described in [45] and will be briefly summarized here.

Naturally, each country has its own regulations governing compliance technical standards
and legal specifications, and these must be applied either instead of or in conjunction with
those which are listed below.

Planning

In all cases the latest cadastral plans or the official site plans should be taken as the basis
for drawing up the pipe-laying or routing plans. The plans showing the layout of the
district heating pipes must indicate the existing utilities and sewage facilities as well as
any structures, such as sewer access or cable access shafts, which could affect the route of
the district heating line. Obstacles of this kind must be taken from the relevant plans of the
authorities responsible for administering the other lines. Sometimes, these basic planning
data are collected together in graphic form on computer diskettes and can then be further
processed in this form using CAD techniques.

The complete set of implementation drawings, such as routing, construction and assembly
plans, drawings of shafts, detailed and workshop drawings, must contain all the data and
facts required to permit proper completion of the work by the respective trades. The
drawings and plans must be available before construction starts. The same applies to the
static calculations.

Permits and approvals

In the Federal Republic of Germany, utility lines, and thus also district heating lines, do
not fall within the scope of the respective provincial (Land) construction code. There is no
obligation to notify the authorities or apply to them for a construction permit.

Nevertheless, in some cases, the construction of a district heating line, for example, an
above-ground line, may require a permit. In such cases, the need for a permit is based on
other legal regulations such as those that apply to federal autobahns, major federal or
provincial highways and rural roads.

It is necessary to approach the relevant agencies and offices in good time to enquire
whether a permit is required or whether notification must be given of the project.
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The use of public roads and property by district heating lines is usually regulated by
concession agreements concluded between the municipal administrations and the
operators of the district heating system. Where the owners of private property are
concerned, agreements should be reached in good time on the laying of the lines, and for
trunk lines appropriate easements should be recorded in the Land Registers. Agreements
of this kind should be reached even if the lines have already been legally entered into
development plans; the reason being that, in such cases, the use of expropriation to
enforce the easements under the Federal Construction Act is only feasible if the district
heating company has first made serious efforts to reach a contractual settlement with the
owner of the property to grant the easement and has tried to pay compensation to the
owner.

The AVB-FernwirmeV [General Terms and Conditions of Supply - District Heating
Regulations] state that, as a general rule, the property of the customer receiving the district
heating service can be used free of charge for laying the connecting lines and possibly also
for installing a trunk line running through the property, including all necessary accessories
in both cases.

Preparing the contract award

Bid sets are prepared in order to invite specialist firms to submit their bids for the
construction of the line. The work is usually divided up into trades such as below-grade
construction, pipe construction and thermal insulation, and depending on the size of the
project the contract may be awarded in sections.

The supplies and services should be described clearly and so completely, stating also the
purpose of the finished line, that all the bidders understand the description in one and the
same way and are able to calculate their prices reliably and without extensive preparatory
work. The contractor must bear the operational risks which he can be reasonably expected
to assume. For circumstances or events over which he has no control, and also for the
development of prices during the term of the contract, separate agreements should be
reached which distribute the risk equally between contractor and purchaser.

The performances will be described in a ‘statement of specifications’. In order to permit
proper pricing, and to make it easier to compare the bids, the performance should be
broken down in such a way that each separate item includes only performances which can
be regarded as equivalent both in a technical sense and in terms of pricing. In the
statement of specifications the individual prices should be broken down according to
‘supply’ and ‘assembly’.

As a rule, the invitation to tender is subdivided as follows:

* An invitation to submit a bid, without any costs or commitment being incurred on the
part of the party inviting the bid.
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e General preliminary remarks

e A description of performance with bill of quantities
e General and specific contractual conditions

e Additional contractual conditions

e Additional technical regulations

e Rules Governing the Award of Public Works Contracts (VOB-Verdingungsordnung fiir
Bauleistungen)

e Part B of DIN [German Standard] 1961
General contractual conditions for the execution of construction work; any
amendments or additions to the contractual conditions contained in Part B must be
separately stipulated.

e Part C of DIN 18300-18451
General technical regulations applicable to construction work;
any amendments or additions to the contractual conditions contained in Part C
must be separately stipulate, and

e Technical legislation.

If bills of quantities are prepared using an EDP-programme, a print-out is prepared or the
diskettes may be given to the bidder. All other parts of the invitation to tender will be
grouped together in a manual. Normally the invitation to bid and the award of contract are
based on the conditions set forth in VOB Part A DIN 1960, without granting the bidder
any kind of enforceable right arising therefrom.

The statement of specifications must cover all the work to be carried out. The supplies of
materials to be included in the bid must be defined. Some typical items to be included
when preparing the statement of specifications are listed below as a guide. The list makes
no claim to be complete.

o Breaking-up and making good again the terrain and road surfaces, depending on the
particular type.

e Excavation of the trenches and construction pits; the dimensions should allow for the
agreed on working widths; the excavation work may, if necessary, be subdivided into
various depth levels and soil classes.

e Lining of the trenches and construction pits, subdivided into horizontal and vertical
lining.
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* Demolition work in the area of the trench and construction pits, divided up according
to the type of demolition

* Making openings for district heating pipes to pass through masonry walls and concrete,
caulking around them.

* Removing soil masses displaced by the district heating lines and new structures.

* Removing all the excavated soil masses and bringing in backfill material, if the quality
and compaction of the soil make this necessary

® Removing debris and demolition material

® Manufacturing, transporting and installing finished concrete parts
* Producing the ducts, trench floors, shafts, foundations, pedestals
* Grouting the sliding bearings, thrust blocks, brackets, supports

* Producing the sand bed on the floor of the trench

¢ Embedding the casing pipe in sand

* Relocating existing utility lines, sewers and cables which are in the way of the heating
line.

* Producing, maintaining and disassembling vehicle and pedestrian bridges
* Laying out the construction site with access and departure routes
e Transporting construction materials

¢ Drainage.

General and specific contractunal conditions

These conditions regulate the agreements which must be concluded between the purchaser
and the contractor in order to implement the construction work. They supplement the
Rules Governing the Award of Public Works Contracts (VOB - Verdingungsordnung fiir
Bauleistungen) and thereby match them in detail to the specific project.
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Execution of the construction work

The plans for the execution of the construction project must be available in good time
before the work commences. It must be clearly stated which company or enterprise is
responsible for preparing this documentation. The plans must be approved by the
purchaser before construction may commence. In addition, agreement must be reached on
the scope of the master plans which should exist once the construction work has been
completed. Any doubts (with explanations) about the manner in which the district heating
system is to be installed and the sequence in which the work is to be carried out should be
brought to the attention of the purchaser in good time and together with suggestions on
how to amend the process.

The final acceptance and invoicing procedures, also the payment conditions, must be
agreed on. In addition, the following points must be dealt with (this list contains examples
only and makes no claims to be complete):

Project management

The purchaser must be represented on the construction site by a responsible project
manager.

Construction site facilities

Storage areas and work areas, also access routes, will be built and maintained by the
contractor, at his own expense, in consultation with the authorities. Any water, sewer,
electricity and telephone connections that are required must be obtained by the contractor.
The costs for these performances should be shown separately in the statement of
specifications. Any deviations from these agreements must be clearly established by the
contracting parties.

Once the construction work is completed, the construction site equipment and facilities
must be disassembled, loaded onto trucks and removed; the construction area must be
cleaned up and roads, pathways, ditches, park areas, etc. must be restored to their original
condition.

Deadlines

The deadlines for the commencement and completion of the work must be agreed on as
soon as possible between the purchaser, the civil engineering and pipeline construction
companies, and all other companies involved in carrying out the work. If necessary,
individual deadlines for the completion of specific sections of the construction project
should be shown in a work schedule.



159

Any events which modify the deadlines in the work schedule should be brought to the
attention of the purchaser by the contractor as soon as possible after they have occurred or
been detected. A penalty or compensation for default, possibly tied to the delay involved,
should be agreed on for situations in which a completion deadline is exceeded.

Drawings and calculation documents

All the construction work should be carried out in accordance with construction plans and
individual drawings. Any modifications to the execution of the work compared with the
drawings require the prior approval of the purchaser. The contractor is obliged to build the
structures in a technically perfect manner. If a drawing should contain any deficiencies
which would prevent the contractor from achieving this goal, he must inform the
purchaser of this circumstance.

Surveying work

The costs for having a publicly appointed survey engineer, the planning engineer or the
construction companies themselves survey and stake out the site of the district heating line
and determine the elevation reference points shall be separately recorded.

Fencing and scaffolding

The design of the scaffolding and fencing needed to permit the work to be carried out
smoothly and safely shall be left to the contractor to decide. He must follow the accident
prevention regulations. The construction sites must be fenced off and illuminated
throughout the entire construction period. Traffic signs and facilities must be set up in
good time and maintained in consultation with the road traffic authorities and the police as
well as the purchaser. The traffic regulations must be observed. Payment for these
performances will either be made separately, or the performances will be included in the
work required to set up the site facilities.

Working on Sundays, statutory holidays, at night, and overtime

If it is necessary for work to be performed on Sundays, statutory holidays or at night, the
contractor, acting in cooperation with the purchaser must obtain the necessary permit from
the competent authorities. For night work, the contractor shall provide adequate
illumination of work and traffic areas.

Overtime will be paid only if the purchaser, for special reasons, requires that overtime be
worked.
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Breaking up the road surface

Prior to commencing the break-up operations, the condition of the road surface should be
determined together with the competent authorities and the contractor.

When roads are broken up, any reusable material such as curbstones, paving setts or slabs
must be put on one side, in accordance with special instructions, and should be stored
separately from backfill soils and other materials so that they can be reused at a later point
in time.

Before privately owned areas are broken up, an inventory of the area, possibly including a
written record, plans of existing structures and photographs of the currently existing
condition, should be prepared in cooperation between the owner, senior management and
the local construction manager.

Construction of trenches and construction pits

Before commercing any shaft excavation work, the contractor must inform himself about
the soil conditions. The excavation should be carried out in compliance authorities and
any other relevant regulations, such as Work Sheet ZH 1/441. If necessary, the excavated
masses of material displaced by the ducts, shafts and pipes must be removed immediately.
Excavated masses of earth which can be reused as backfill should be stored in such a way
that, on one side, sufficient room is left for work to be performed and for materials to be
transported. The free space on one side of the excavated trenches should be at least 1 m
wide. Roadways and paths on the construction site should be maintained in a clean and
safe condition. Any construction debris which gets tracked onto the roads and paths
should be removed. Piles of earth should be kept off the traffic area by means of planks or
at least by using duckboards so that the excavated material is not tracked around. Water
run-off in gutters and ditches should be maintained by installing bridging sections and

pipes.

No excavated material may be stored on top of shafts leading to other supply lines, or on
survey points, hydrants, etc. Trees, shrubs, parts of buildings should be protected from
damage by setting up protective cladding or walls, cf. DIN 18920 and the RSBB
[Guidelines for the Protection of Shrubs and Trees in the Area of Construction Sites].

Roadways, paths and gate entrances which intersect with trenches must be provided with
bridges or means of crossing the trenches; such structures must be capable of withstanding
the stresses imposed on them when in use and they should be fitted with an accident-proof
protective railing.

If gas and water lines, electricity and telephone cables, cable ducts, sewers, etc. are
exposed during excavation, the relevant authorities should be informed and their
instructions should be followed. When excavating the trenches, care should be taken not
to damage any other pipes and lines along the route followed by the district heating pipes.
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The other lines should be carefully protected in accordance with the instructions given.
Before the trenches are refilled, any exposed pipes and lines may have to be inspected by
the enterprise or authority responsible for them.

Railway/streetcar tracks must be secured and supported in accordance with the regulations
of the respective transportation enterprise throughout the entire construction priod.

The width of the trench should be selected in such a way that sufficient working space is
left, e.g. for sealing the points on the concrete ducts. The minimum dimensions according
to DIN 4124 must be observed. The amount and location of the working space required
varies according to the pipe-laying method used.

In each case, prior to starting work, the purchaser and the contractor must agree on the
size of the working space required and also, in the case of an open construction trench, the
slope angle so that no differences of opinion can arise when measuring quantities and
invoicing. Furthermore, before commencing construction, it is useful to decide on the type
of pit boards to be used and the depth to which they are to be installed.

If the construction trench has been cut too deep, the error must be corrected by using lean
concrete or some other suitable material.

Lining of pits and trenches
The walls of the excavated trench should be immediately and expertly lined.

Removal and relocation of the trench lining, which is necessary to permit the pipes to
installed and laid, should only be undertaken by the civil engineering company and not by
the pipe-laying company. In special cases it may be advisable to brace the pipe installation
site with steel frames. The civil engineering company must bear the costs of the trench
support work. The company is also responsible for the stability of the bracing for the
period of time that other workers are employed in the trench. These other workers may not
by themselves make any changes to the bracing nor may they place any impermissible
stress on the bracing. The individual bracing elements may only be gradually removed as
the trench is filled up. If special trench support measures are required, for example when
working in poor ground or in underpinnings, the manner in which this extra support shall
be provided must be agreed on beforehand and any resulting costs should be quoted
beforehand.

Welding pits

In order to execute circular welds on the fixed steel pipe it is advantageous to provide a
recess in the floor of the construction pit over a length of 0.5 to 2 m, and oriented parallel
to the pipe axis. The working space between the lower edge of the pipe and the bottom of
the trench should be about 0.6 m. The lateral space at this point between the trench wall
and the respective outer pipe should also be about 0.6 m.
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Production of the concrete structures

The concrete used should meet the specifications of the German Committee for Steel-
Reinforced Concrete DIN 1045 and should be as dense and impermeable to water as
possible. The formwork should be constructed without joints and should be completely
flat so that a clean and smooth concrete surface is obtained. Cap sections and other
finished parts should as far as possible be produced at the concrete factory.

Proof should be provided of the quality of the concrete.

In agreement with the pipe-laying company, the sliding bearing and thrust blocks will be
grouted with pourable concrete. In order to save time, setting-accelerators can be added to
the concrete.

Before it is covered over by the construction firm, the duct should be given one last,
thorough cleaning. It is incumbent on each contractor to clean up the construction site
before handing it over to the contractor. When the duct is covered over, care should be
taken to protect the pipelines and the thermal insulation.

Backfilling the construction trench

In general, low-grade backfill soil should be wholly or partially removed and replaced by
suitable soil material. The trenches and construction pits beneath traffic-bearing surfaces
should be backfilled and sealed in accordance with the “Work Sheet for the Backfilling of
Pipe Trenches’. The space between the vertical concrete wall or the casing pipe and the
wall of the trench should be carefully backfilled and tamped down.

Liability

The purchaser and the contractor should contractually agree that until his work has
undergone final acceptance, the contractor shall bear the risk for any damage and for any
infringement of the rights of third parties as well as for any losses caused by the work and
services provided under the contract.

If requested, the contractor shall show proof that he has taken out the customary insurance
cover for his particular trade.

Warranty

The deadline for handover of the system shall be mutually agreed on by the contracting
parties before construction work commences.

The contractor shall guarantee that at the time when the risk is transferred to the
purchaser, the installation which he has produced possesses the contractually assured
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properties, complies with generally accepted engineering standards and does not have any
defects which would cancel out or reduce the value of the installation or its suitability to
be used for its customary or contractually stipulated purpose.

The warranty covers, for example, the dimensionally accurate construction of the line
within the height and lateral play tolerances prescribed by the pipeline construction
company, as well as the stability and durability of the structure, its impermeability to
surface water and, if necessary, to groundwater, as well as the prevention of subsidence of
the road surface.

The warranty shall run for 2 years, calculated from the day of final acceptance by the
purchaser. Longer warranty periods can be agreed on. The purchaser and the contractor
should agree that the contractor is responsible for replacing, upon request, without delay
and at no cost to the purchaser, all parts which become unusable or defective or suffer
more than the natural amount of wear during the period of the warranty due to defective
design or the use of defective or unsuitable materials. Replaced parts shall become the
property of the contractor and shall be removed by him. Any resulting costs must be borne
by the contractor. At the same time, it should be clearly stipulated that the contractor shall
be liable beyond the warranty period for any consequences arising from culpable failure to
comply with the contractual conditions.

Project manager

The project manager must carry out the duties laid down in the relevant Land [state]
construction code. The purchaser will inform the supervisory authorities of the project
manager’s name. The project manager cannot delegate his tasks, however, he may appoint
a deputy, or specialist project managers may be called in if he does not possess the
necessary factual knowledge and experience to perform all the duties incumbent on him.
However, he is responsible for ensuring that his activities fit in smoothly with the work of
the specialist project manager.

The project manager is obliged under public law to supervise the construction project so
as to ensure that it is properly completed within the agreed deadline. His supervisory
activities shall be based on the generally accepted standards that apply in the construction
industry, as adopted in the form of construction regulations through public proclamation
by the senior construction authority. The Project manager’s supervisory shall also be
based on individual drawings, individual calculations and instructions given by the auther
of the plans or, if these are not required, on the approved construction documents.

In carrying out his duties he must ensure that safe operating conditions prevail at the
construction site and that the work performed by the various individual contractors shall
remain unaffected by this. He shall ensure that the accident prevention regulations are
observed and has the authority to issue legally binding instructions.
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The construction manager may obtain insurance coverage through an employer’s liability
insurance scheme only in the event of negligent infringement of the secondary obligation
to safeguard traffic if claims for damages, e.g. due to improper fulfillment of his duties,
are brought against him.
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Polyurethan-Wéitmedé'mmung und Aumenmante] ayg Polyethylen hoher
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