International Energy Agency
IEA District Heating

Programme of research, Development and Demonstration on Distilict Heating and Cooling

DISTRICT HEATING PIPING WITH PLASTIC MEDIUM PIPES STATUS OF THE DEVELOPMENT AND LAYING COSTS

Published by
Novem

acting as operating agent for the IEA District Heating and Cooling project

1992: P 3

ADDENDUM

The work was coordinated by the following group of experts:

Mr. Prof. Sture Andersson
Mr. Bob Couch
Mr. R. Jetzelsperger
Mr. K.E. Madsen
Mr. Per Rimmen
Mr. Kurt Risager
Mr . Schaefer
Mr. Schröder-Wrede
Mr. Arno Sijben
Mr. Veli-Pekka Sirola

Malmö, Sweden
Brecksville, USA
Ontario, Canada
Oslo, Norway
Odense, Denmark
Kolding, Denmark
Jülich, Germany
Köln, Germany
Sittard, The Netherlands
Espoo, Finland

In the appendix to the report attached you will find important biliographical references. They are cited in their original language. Please look at them not as a part of the report but as a service to the reader.

Translations of special comments to figures

page 51	Aushubmaterial	excavated material
page 69	Vandbett	sandbed
	Stunden pro Jahr	outgoing temperature
	Angen. Temp. Verteilung	hours per year distribution
	Grad C	centigrades
page 71	Standzeit	lifetime

Dear reader,

The Executive Committee of the Implementing Agreement on District Heating and Cooling is interested to improve the impact of the R\&D activities and the effectiveness of the programme.
For that reason the Operating Agent needs your support. May I ask you to be so kind to complete the following questionnaire and to sent it back to:

Novem BV
Attn. Mr. J.C. Resing
P.O. Box 17
NL-6130 AA SITTARD

0 What are your name and adress
Name:
Adress:
0 What is your professional relation to the item of the report?
\qquad
\qquad
0 How did you receive your copy of the report?
\qquad
\qquad
0 Do you appreciate the activities, described in the report?
\qquad
\qquad
0 Do you have suggestions for further dissemination of the results presented in the report?
\qquad
\qquad
0 Do you have any suggestions for further tasks, or comments to the activities of the Implementing Agreement?

DISTRICT HEATING PIPING WITH PLASTIC MEDIUM PIPES STATUS FOR THE DEVELOPMENT AND LAYING COSTS

CONTENTS

1. Summary
2. Introduction
2.1 General
2.2 Present Situation
2.3 Scope of the Task
3. Description of the Pipe Systems
3.1 Ecoflex
3.1.1 Description
3.1.2 Limits of Application
3.1.3 State of Development
3.2 LR-PEX
3.2.1 Description
3.2.2 Limits of Application
3.2.3 State of Development
3.3 NTS-Ferwag-Flex
3.3.1 Description
3.3.2 Limits of Application
3.3.3 State of Development
3.4 Flexalen
3.4.1 Description
3.4.2 Limits of Application
3.4.3 State of Development
3.5 Wirsbo - IM-RO-PEX
3.5.1 Description
3.5.2 Limits of Application
3.5.3 State of Development
4. General Situation from a Technical Point of View
4.1 Laying Practice
4.2 Oxygen Diffusion
4.3 Water Vapour Diffusion
4.4 Behaviour of Materials when Using Friction Reducing
Additives
4.5 Provisional Sealing of the Pipe by Squeezing
4.6 Laying in Horizontal Bores
5. Cost Situation for Plastic Systems in 6 European Countries
5.1 Procedure
5.2 Basic Costs
5.2.1 Routine Structure of the Subdistribution
5.2.2 Specific Civil Engineering Costs in the Countries Involved
5.2.3 Costs of Materials
5.2.4 Assembly Costs
5.2.5 Cross-Section of the Trenches, Earthwork Quantities
5.2.6 Exchange Rates
5.2.7 Factors which are Dependent on the System
5.3 Cost Comparison
6. Consideration of the Lifetime of Pipes of $\mathrm{PE}-\mathrm{X}$ and PB
6.1 Definition of the Problem
6.2 Basic Information
6.3 Assumed Loads
6.4 Thermal Loads (Ageing)
6.5 Mechanical and Thermal Loads (Static)
6.6 Load Limits
7. References

District heating pipelines with plastic medium pipes can offer advantages in public supply systems with diameters less than DN 100. The standard design with medium pipes of crosslinked polyethylene PE-X (previously VPE) and polybutylene (PB) seem to be suitable for loads of an operating pressure of 5 bar and variable supply temperature up to $90^{\circ} \mathrm{C}$.

Pipelines with plastic medium pipes have brought cost advantages of up to 40 of compared with today's standard design of plastic compound jacket pipe with steel medium pipe. These advantages vary considerably from manufacturer to manufacturer; they differ in the northern and middle European countries considered here as a result of the level of the civil engineering costs. Savings are a result of the fast and flexible method of laying.

The low proportion of plastic pipelines in public district heating networks is primarily a result of the sensitivity to temperature and pressure and the lack of experience of the longterm behaviour. The use of these flexible systems will increase as long as the cost advantages remain and further positive operational experiences are made and temperature/ pressure levels are decreased.
2. Introduction

2.1

General

The medium pipe of a conventional district heating system is made of steel since this material is particularly suitable for withstanding thermal and pressure loads. Plastic medium pipes can be more favourable than steel for small pipelines, even though they can only stand lower temperature and pressure loads. The assembly procedure can be so advantageous that cost reductions for pipeline construction result even though the pipe material itself is often more expensive than steel pipes. To reduce the high investment costs of pipeline construction an attempt must be made to use these possible savings to the full. They are offered in the area of small pipelines and service connections for nominal diameters under DN 100 .

Suitable pipeline systems with plastic medium pipes are being offered for sale in all the countries being considered here in Western, Central and Northern Europe, although not always to the same extent. For this reason, a comparison of the user practice and construction costs between the countries would be worthwhile. The work is an extension to an IEA-report, based on the status in 1985/86 [1] which concerned the construction of pipelines in areas of low heat density. A comparison of pipe systems on the market today with those considered at that time makes the rapid development experienced in this area quite clear. In fact, not one system is still being offered on the market without changes having being made. The many new developments mean that it may be assumed that there is still a considerable potential for a further development of these systems.

2.2 Present Situation

The status of the development today can be summarized in three sentences:

1. The experiences made by the manufacturers and from applications have produced a positive effect on the market, which has increased the expected turnover of established manufacturers and has also attracted new suppliers.
2. Manufacturers and users are following difficult development objectives. Plastic pipe systems will be open to professional applications and manufacturers will be able to increase their turnover only when all remaining application problems have been correctly solved.
3. The turnover of pipeline material based on cross-linked polyethylene is manytimes higher than the turnover of polybutylene systems.

These statements must be explained more in detail. The established manufacturer of plastic systems assesses the chances of these systems as positive. In addition, a competent company from Switzerland, Kabelwerk Brugg, has joined these suppliers and has introduced a new system, see section 2.3 . It is also interesting to note that manufacturers of conventional systems, i.e. of plastic jacket pipes, are increasingly extending their palette of products including plastic systems, e.g. Lógstór and Dansk Rorindustri. Wirsbo has even introduced a complete system although this company already has a very high position on the market as manufacturer of basic material.

Plastic medium pipes have been applied in a large number of reference "networks" which, for several products, have already shown periods of utilization of up to 12 years. It is noticeable that the main area of sales is the small, house-hold-oriented construction of pipelines which are served by plumbers. In the case of professional pipeline planners of the supply for communities, these systems have only been introduced in isolated projects where this type of design has been regarded as advantageous as a result of special experiences with plastic or for reasons of intentional industrial cooperations. In particular, the long-term experience is not sufficient for district heating suppliers. This point is dealt with in detail in section 4 . In general, it can be said here that the main problem lies in the permeability of gases through plastics. Even if one regards oxygen diffusion into the heating water as a problem that was originally feared but which can be solved with today's designs, the scientific discussion is being fed as a result of the fact that even water vapour escapes. The supplier can only expect frictionless sale of his products when this question has been clearly answered and the new systems show advantages when composed with the proved building constructions.

A final decision on the advantages of competing materials polyethylene PE-X (formerly VPE) and polybutylene PB cannot be made. The decisive advantage of PB lies in its weldability which makes jointing easier. However, this advantage has disappeared since the mechanical jointing elements for PE-X are meanwhile regarded as reliable. The connecting strainers, available today, have been classified both by the user as well as the manufacturer as so reliable that they can be buried in the ground. Further developments on these connectors are no longer concentrated on a reliable function but on reducing costs by means of saving material and simplifying assembly.

2.3 Scope of the Task

The work presented here had the objective of describing the systems which are offered today and to present the status of development which they have achieved. Problems which still hinder an unconditional application should be outlined. A large part of this work is devoted to cost considerations which compare which laying costs would be incurred by a particular system in a particular country, see section 5 .

In addition, this work includes a static consideration of the life of plastic medium pipes. This was needed because of the fact that system manufacturers were giving different load limits for the same pipe.

Description of the Pipe Systems

Five pipe systems are available on the European market today. The products are as follows in the order of their estimated position on the market:

1. Ecoflex

Manufacturer: Oy Uponor Ab
Ecoflex
P.O. Box 21

SF-15561 Nastola
2. LR-Pex Manufacturer: Lógstơr Ror industri Danmarksvej 11
DK-9670 LOgstor
3. NTS-Ferwag-Flex

Manufacturer: Brugg Kabel AG Rohrsysteme CH-5200 Brugg
4. Flexalen

Supplier:
Flexalen - Fernwâme systeme GmbH Kaiserstr. 45
A-1070 Vienna
5. Wirsbo - IM-RO-PEX Supplier: Wirsbo GmbH Max-Nonne-Str. 47
D-2000 Hamburg 62

Although the manufacturers named deliver their complete pipe system, they do not manufacture all components themselves. The medium pipes are sometimes purchased articles, as are pipe connections, welded fittings and other parts. The largest supplier of the medium pipe for the systems is Wirsbo. It supplies the PE-X pipe for the Ecoflex system, LRPEX and Wirsbo IM-RO-PEX. It is the same product which is being used in great quantities in plumbing for hot-water pipes and underfloor heating.

In the following sections, the individual pipe systems will be described. This description should not replace the system
details provided by the manufacturer, which can be found in the product catalogue, it should, however, present the most important characteristics of the system as required by district-heating specialists.
3.1 Ecoflex
3.1.1 Description

The Finnish product Ecoflex consists of a VPE medium pipe (manufactured by Wirsbo) with an EVAL oxygen barrier which is extruded onto the pipe. The pipe is contained in thermal insulation of foamed PE which is produced in layers. The jacket pipe is a corrugated PE-pipe, see Fig. 3.1-1.

Fig. 3.1-1: Construction of the Ecoflex Pipe

The pipe material is supplied in rolls in nominal diameters of DN 20 to DN 80. A double pipe system, in which the supply pipe and the return pipe are enclosed in the same jacket pipe, is available for small pipelines of DN 20 to DN 40 .

Pipe connections are made using clamp joints which are part of the Wirsbo pipe programme. Thermal insulation at the joints is ensured using insulating jackets. The whole joint is covered by a shrink sleeve between the ends of the jacket pipe, see Fig. 3.1-2. The metallic clamp joints can be combined with screw fittings so that branches, reductions and sharp pipe deflections can be included. There are special insulating components for these situations. Insulation is protected by special end caps at the front end so that, in the case of leakage, no water can enter the insulation layer.

Fig. 3.1-2: Pipe Connection with Extra Thermal Insulation and Shrink Sleeves

Special components are small assembly shafts of polyethylene in which branches can be installed and protected from the earth, see Fig. 3.1-3.

Fig. 3.1-3: Branch with Assembly Shaft

3.1.2 Limits of Application

Dimensions: Pipe material is supplied from DN 20 to DN 80 (int. dia. $=90 \mathrm{~mm}$) ; double pipe from DN 20 to DN 40 .

Standard delivery length is 200 m for DN 20 and 50 m for DN 80 .

40 cm is required as minimum coverage, 80 cm for traffic loads.

The wallthickness of the jacket pipe is in correspondence to the diameter

$$
\text { for } \begin{aligned}
D & =128 & & 1,3 \mathrm{~mm} \\
D & =160 & & 1,8 \mathrm{~mm} \\
D & =200 & & 2,2 \mathrm{~mm}
\end{aligned}
$$

Loads: Stress and strain limits are not given exactly by the manufacturer. A limiting temperature of $90^{\circ} \mathrm{C}$ for constant loads was men-tioned with a temporary overload of $120{ }^{\circ} \mathrm{C}$. The corresponding maximum pressure is not given. At a constant temperature of $90^{\circ} \mathrm{C}$ this should be 5 bar. (In a Finnish Ecoflex-brochure maximum pressures of $6 \mathrm{bar} / 90^{\circ} \mathrm{C}$ and $10 \mathrm{bar} /$ $70{ }^{\circ} \mathrm{C}$ are given!

3.1.3 State of Development

The Ecoflex system, in its present form, has alredy been used for 6 years. The diffusion barrier of EVOH (trade name EVAL) reduces the oxygen diffusion to about 1 of compared with the unprotected pipe. The present EVOH layer has been used for about two years. It is thinner and mechanically more stable than the previous brown barrier layer.

In Finland, about 60 km of plastic medium pipe constructions in general have been laid in public supply systems. 30 km of this is Ecoflex-pipes with about 15 km installed in Lahti. The long-term operational experience which has neen made there with PE-X medium pipes has led to a positive assessment of the Ecoflex design.

The clamp screwed fittings used as pipe joints have proved to be so reliable after up to 20 years of operation, that they can be buried directly in the ground.

The next objective of development work is to rationalize the production by a continuous foaming of the thermal insulation which today is being produced separately. In this way the layers of insulation could be replaced by a homogeneous foam layer.

3.2 LR-PEX

3.2.1 Description

The Danish pipe system LR-PEX from the manufacturer Lögstör Rör uses the PE-X medium pipe from Wirsbo, which has already been mentioned. It also uses the same diffusion barrier EVOH. The pipe construction corresponds more or less to that of plastic compound jacket pipes. The medium pipe is rigidly foamed with a polyethylene jacket pipe. A semi-flexible PURfoam is used for the foam and LDPE is used for the outer jacket. In this way the pipes are at least suitably flexible in the case of small nominal diameters.

The pipes can be supplied in rolls for nominal diameters from DN 16 to DN 50. Pipes of DN 50 to DN 80 are supplied in lengths. There is only a single pipe system.

There is an extensive range of articles in the programme for pipe joints. Lines available are screwed clamp fittings and press-on joints for quick assembly. All PE-joints are also available with screw threads, so that they can be combined with metallic parts of the pipeline, such as T-branches, reductions and also with fittings.

Fig. 3.2-1: Construction of the LR-PEX Pipe

The screwed clamp joints correspond to the types found on the market and do not need to be described here in more detail. However, the press-on connections are new, see Fig. 3.2-2. They are mounted using a special tool. It is a fast assembly process requiring no screws.

Fig. 3.2-2 Installation of the Press-On Joint

There are several possible ways to implement branches in the PE-X system. Figure $3.2-3$ shows a selection. The various designs are allocated to particular ranges of the nominal diameter.

Joints in thermal insulation and in the jacket pipe are carried out with insulating foam and shrink sleeves. There is also a double leak-proof sleeve. At the front end the LRPEX pipe is closed with end caps.

Fig. 3.2-3: Design of T-Branches

3.2.2 Limits of Application

Dimensions: Pipe material is supplied from DN 16 to DN 80 (int. dia. $=90 \mathrm{~mm}$).

Delivery length is maximum 200 m for DN 16 and 50 m for DN 50 .

Larger pipes of DN 50 and more are supplied in lengths of 12 m .

The wallthickness of the jacket pipe is for the outer diameter

66 to 90 mm	$2,2 \mathrm{~mm}$
110 to 125 mm	$2,5 \mathrm{~mm}$
140 to 180 mm	$3,0 \mathrm{~mm}$

Loads :
Maximum values for temperature (constant temperature) and pressure are given as

$$
\begin{aligned}
& \mathrm{T}=95^{\circ} \mathrm{C} \\
& \mathrm{p}=6 \\
& \text { bar. }
\end{aligned}
$$

40 cm is required as minimum coverage.

3.2.3 State of Development

Lógstor Ror, as the largest manufacturer of plastic compound jacket pipes, has extended its programme of plastic pipe systems over many years with increasing success. Up to a few months ago, Logstor was producing two systems, one based on $\mathrm{PE}-\mathrm{X}$ and the second using the pipe material PB. Today the PEX system alone has been preferred and this is also based on the Wirsbo PEX-pipe. Components for the PB system are only being maintained for customers involved in extension and completion work.

The programme of jointing elements is extensive in order to be able to offer favourable material for the different appli-
cations. The special components for jointing plastic compound jacket pipes with steel pipes to elements for PEX-pipes makes the connection of one system to the other easier.

Oxygen diffusion is limited by the EVAL-barrier of the Wirsbo PEX pipe. Water vapour diffusion is being investigated by Logstor Ror in a cooperation with the Dansk Teknologisk Institut. The first qualitative results are available [3] and signify that the problem can be solved by adapting the design. Lógstor Rór has indicated that more explanatory statements will be available when the investigations have been completed in summer 1992.

3.3 NTS-Ferwag-Flex

3.3.1 Description

The NTS pipe is a new development of the Swiss cable manufacturer, Kabelwerke Brugg. It is a compound pipe with a special layer construction, which includes two diffusion barriers, see Fig. 3.3-1. The medium pipe consists of unblocked PE. This is enclosed in aluminium foil which overlaps and is glued together and acts as a diffusion barrier to water vapour. A textile band, under pre-tension, is wound around the aluminium foil to support it. The next layer is a flexible PUR foam as thermal insulation. This is surrounded once more by aluminium foil acting as a diffusion barrier. This is glued along its length and, during production, serves as a casing for the foam. The external protection of the whole structure is provided by a final extruded PE-jacket. The outer aluminium foil is declared as an oxygen barrier by the manufacturer.

The pipe material is available for nominal diameters of DN 20 to DN 65. A double pipe system for DN 25 and DN 32 can also be supplied. The pipe is either delivered in bundles of 50 or 100 m lengths or a cable drum.

The PE-X medium pipes are screwed together using clamp joints. Shaped pieces are used to insulate the joints. The connection of jacket pipes is made using a slip-on sleeve and shrink socket, see Fig. 3,3-2.

As in the case of plastic jacket pipe systems, manufactured tees are available for constructing branches, see Fig. 3.33. At pipe ends, the front end of the PUR-foam is closed using end caps of shrink-on material.

The supply programme for the NTS-system is being continually extended. The production volume amounts to about 15 km per year. The manufacturer has made his design particularly safe regarding the diffusion of oxygen and water by using two diffusion barriers.

Fig. 3.3-1: Pipe Construction of the NTS-Ferwag Flex

Fig. 3.3-2 NTS-Ferwag Flex Pipe Connection Laid in the Ground

Fig. 3.3-3 Branch with Manufactured Tees

3.3.2 Limits of Application

Dimensions: Pipe material is supplied in 4 nominal diameters from DN 20 to DN 65, double pipes are available for DN 25 and DN 32.

Delivery lengths in bundles is 50 m or 100 m . Lengths of 500 m are available on cable drums.

The thickness of the outer PE-jacket pipe is 3 mm .

Loads :
The system can be subjected to a maximum constant temperature of

$$
\begin{aligned}
& \mathrm{T}=90^{\circ} \mathrm{C} \\
& \mathrm{p}=6 \text { bar. }
\end{aligned}
$$

60 cm is required as minimum coverage.

3.3.3 State of Development

The NTS-Ferwag system is a relatively new product, whose palette of products is still being continuously extended. In the meantime, pipes and accessories are available up to DN 65. The extension of the programme to include a double pipe system of DN 20 and shaped pieces for the connection of single to double pipe systems has already been announced.

According to the manufacturer, a particular development priority was to find a guarantee against uncontrolled diffusion processes. The NTS-system is the only pipe containing two metal diffusion barriers. The inner layer covers the medium pipe in a spiral envelopment, whereby only short pieces of pipe at joints are unprotected. The outer aluminium foil covers the foam in such a way that, together with the end caps on the front end, the PUR foam is completely isolated. Sleeves are also mounted without previously shrinking on end caps.

The NTS pipe was designed under particular consideration of diffusion flows of water vapour from the medium pipe into the PUR foam. This flow of material is not only to be observed it is also an important factor in the determination of the lifetime of the pipe. The end of the period of utilization is considered to be reached when the heat conductivity has increased by 30 of a result of water in the thermal insulation. Section 6 deals with this topic in more detail.

A special aim of development activities of the NTS-manufacturer is the combination of the flexible system with horizontal drilling, so that laying is possible without digging trenches. Pipe laying using this technique is being offered by the manufacturer on his own and also in a cooperation with Flowtex.

3.4 Flexalen

3.4.1 Description

The Flexalen pipe is composed of three elements, as shown in Fig. $3.4-1$. The medium pipe consists of the thermoplastic polybutylene. It lies in specially shaped, cylindrical insulating elements of PUR rigid foam, which are enclosed in a polypropylene envelope. The ends of the insulating elements are so shaped that they fit into each other to form a joint, as shown in the longitudinal section in Fig. 3.4-1. The whole arrangement is enclosed in a corrugated jacket pipe of HDPE. The pipe is easy to bend.

Fig. 3.4-1: The Flexalen Pipe System with Corrugated Jacket Pipe

The arrangement of the medium pipe may vary. For instance, instead of one large medium pipe both small medium pipes can be installed in the insulating elements. Supply and return pipes are then laid uninsulated with respect to one another side by side.

In addition to the corrugated pipe system, pipe lengths are available for nominal diameters of DN 80 (internal diameter $=$ 90 mm) and DN 100 and these are, in principle, constructed similar to compound jacket pipes. They only allow bending radii of 18 m in opposition to $1,25 \mathrm{~m}$ for the corrugated pipe system.

Welding is preferred for jointing medium pipes since PB is a thermoplastic. However, in addition, screwed clamps or flange joints can be used to make individual joints or for a connection of plastic to metal.

Hot-tool sleeve welding and hot-coil sleeve welding can be used as welding methods. Hot-tool butt welding is also applied for larger nominal diameters of DN 80 and DN 100 , see Fig. 3.4-2, no. 3.

There are sleeve shaped pieces for jointing the jacket pipe of the corrugated pipe. These are fixed with bands after the front ends have been covered with end caps. Pipe lengths are connected with slip-on sleeves which is normal practice for compound pipes, only here the sleeves are fully foamed.

Changes in direction are possible by bending the whole pipe. However, formed pieces are also available for sharp bends. The programme is completed by further fittings for branches, reductions, end plugs etc.

Up to now this system has not been fitted with a diffusion barrier.

1. Hot-Tool Sleeve Welding

DN 20 to DN 80
2. Hot-Coil Sleeve Welding

DN 80
DN 100
3. Hot-Tool Butt Welding

Fig. 3.4-2: Welding Processes for the Medium Pipe
3.4.2 Limits of Application

Dimensions: Pipe material is supplied from DN 20 to DN 80 (int. dia. $=74 \mathrm{~mm}$) in corrugated jacket. DN 100 is available as lengths. Larger pipes can be ordered. A double jacket pipe system is available for DN 20 to DN 40, whereby the supply and return pipes come into contact.

Delivery lengths for single pipes up to DN 50 and double pipes up to DN 25 are 100 m , for larger pipes lengths of 50 m are available.

The wallthickness of the jacket pipe is about 2 mm .

Loads :
Maximum combination of temperature and pressure is given as $90^{\circ} \mathrm{C}$ for variable supply temperatures $(60 / 90)$ and 6 bar.
0.5 m is required as minimum coverage, 0.8 m for traffic.

3.4.3 State of Development

The Flexalen system has undergone a development lasting about 8 years. It was designed in a close cooperation between a manufacturer of plastic pipes and a supply company. Polybutylene, of which the medium pipe is made, requires a special manufacturing technology, but this is available without restrictions. The PB pipe is standardized according to DIN. The producted quantities for PB are far lower than the quantities for PE, PP etc. For this reason there is only one producer in the EC.

The special advantages of PB pipes lie in its weldability, which makes the jointing technique easier. Proved welding processes and machines can be used which must be adapted to the behaviour of the material PB. Hot-coil sleeve welding is a technology developed in a cooperation with Georg Fischer, Schaffhausen, and is particularly suitable for use on the building site.

When comparing the Flexalen pipe with the PEX-pipe described earlier, it is noticed that no diffusion barrier for oxygen and water vapour is available. The manufacturer regards this danger as less serious. This is surprising since from literature it is well known that the coefficient of diffusion of oxygen in PB is of about the same order of magnitude as in PE [4]. The danger from water vapour, which could move outwards, seems to be less since hollow spaces are available within the chain of isolating elements. These elements may also not be damaged because each is protected by a thin envelope of polypropylene (PP). However, recently it became known that a diffusion barrier has also been developed for this system and it will soon be available.
3.5 Wirsbo - IM-RO-PEX

3.5.1 Description

The Swedish pipe manufacturer Wirsbo is offering a pipe system with the name IM-RO-PEX with a PE-X medium pipe. This has an oxygen barrier (EVAL) which is extruded onto the medium pipe.

The pipe system consists in principle of 2 parts:

1. Insulating element
2. $\mathrm{PE}-\mathrm{X}$ medium pipe

The insulating element is composed of a corrugated HDPE jacket pipe, thermal insulation of compressed glass wool and an HDPE guide pipe. Each insulating element is fitted with special end caps of VPE. These end caps carry the guide pipe. The sealing between the end caps and the guide pipe is made using an o-ring and to the jacket pipe using molten butyl. At one end of the guide pipe there is a snap-on sleeve of PE welded which takes up the expansion movements of the guide pipe. The connection between two insulating elements is shown in Fig. 3.5-1. The gap which arises when the insulating elements are joined together is filled by a PEX foam disc. In addition a shrink sleeve is shrunk onto the jacket pipe to provide further protection.

The insulating jacket is first laid without the medium pipe. The PE-X medium pipe is later fed by hand or with a rope winch into the guide pipe.

Medium pipe connections are made with clamp couplings, see Fig. 3.5-2. A comprehensive programme of pipe connections are offered by Wirsbo so that branches, reductions, and 90° bends can be constructed without problems.

Fig. 3.5-1 Connection of Two Insulating Elements

Fig. 3.5-2: Clamp Coupling for PEX Medium Pipe
3.5.2 Limits of Application

Dimensions: The PE-X medium pipe is supplied from DN 20 to $D N 80$ (int. dia. $=90 \mathrm{~mm}$).

Double pipes are available from DN 20 to DN 40. The standard delivery length is 200 m ; longer lengths can be obtained if required.

Delivery length of the insulating elements is 12 m .

The wallthickness of the jacket pipe depend on the diameter. It is
for $D=128 \quad 2,2 \mathrm{~mm}$
$D=163 \quad 2,5 \mathrm{~mm}$
$D=186 \quad 2,8 \mathrm{~mm}$
$D=225 \quad 3,0 \mathrm{~mm}$

Loads: The following constant temperatures and pressures are given as limits for application

$$
\begin{aligned}
& \mathrm{T}=90^{\circ} \mathrm{C}, \mathrm{P}=6 \text { bar. } \\
& \mathrm{T}=70^{\circ} \mathrm{C}, \mathrm{p}=10 \text { bar. }
\end{aligned}
$$

According to information from the manufacturer 50 m minimum coverage is required in the area of roads and 70 cm for open spaces.

3.5.3 State of Development

Wirsbo is an important manufacturer of PE-X pipes for heating buildings and water pipes for plumbing and is a supplier for the pipe systems of Ecoflex and Logstor. With its IM-RO-PEX system, Wirsbo is also offering a new plastic system for district heating pipelines of small nominal diameter.

Wirsbo has an insulating jacket that is separate from the medium pipe. The advantage of this pipe construction is that later the medium pipe can be changed without any expensive earthwork. A disadvantage is the extra expense and effort required in laying the pipe in the first place.

Numerous designs of connecting elements and formed pieces are available from the plumbing industry.

Oxygen diffusion has been reduced by the EVAL-barrier to such an extent that no damage to corrosion-prone components is to be expected.

However, overall, it must be said that the IM-RO-PEX system is not fully available on the market. It should be mentioned that experience from Sweden has been collected from several pilot applications. These were accompanied by a series of scientific investigations which were carried out in Studsvik. All results have been brought into the development of the IM-RO-PEX system.

Independent of particular questions which are presented by the individual systems described above, the general situation regarding the application of plastic medium pipes will be considered in the following sections. The behaviour, typical of plastics, of both pipe materials for the operational conditions found here allow a series of general statements to be made.

The annual quantity of pipe material produced for the region of Central and Northern Europe is estimated to be a maximum of 1000 km pipeline (double pipe). Of this, only about 10% is used in networks for community district heating supply. The main part is probably used in the construction of small networks or systems which are installed by fitters and plumbers.

Plastic medium pipes are not used on a wide scale in public district heating supply, but only by a few companies. Before individual questions on the behaviour of the materials and other development objectives are dealt with, in the following sections, details will be given of the laying practice for the systems described above.
4.1 Laying Practice

The main advantage of plastic pipe systems lies in the high performance of laying that can be achieved. The pipes are laid in a trench which can be kept narrow, without working space and can be so designed that it can pass by obstacles, see Fig. 4-1. Assembly times are predominantly determined by branches and joints so that most of the trench can be filled in immediately after laying the pipe. It is possible to lay pipes for complete housing estates within in few days.

Moreover, an important advantage for laying in the ground is the corrosion resistance of the pipes. Should a leak occur, there is no need to fear that the medium pipe will rupture. The thermal insulation becomes wet but supply is not disrupted. Naturally, the thermal insulation should only be allowed to become wet over as short a length of pipe as possible.

Fig. 4-1: Pipe Assembly of a House Connection

PE-X pipes are joined exclusively with screw clamps which are also sometimes used for joining PB pipes. Since a lifetime of 35 years is often required, these elements are considered with a certain amount of scepticism as a result of the wellknown tendency of plastics to creep at higher temperatures. All information available points to the fact that jointing components normally used today are reliable. This experience has been deduced from up to 20 years of operation. Neither the manufacturers nor the operators have any reservations against laying connections underground.

Generally, it must be stated that, in comparison to proved systems with medium pipes of steel, suppliers are less experienced in laying and operating plastic pipe systems.

4.2
 Oxygen Diffusion

District heat suppliers can rely on the results of developments in the field of underfloor heating and experience made there wth diffusion barriers. Three different strategies have been followed up to now by the manufacturers of the 5 products described above:

1. Separating the pipe with an extruded layer of EVOH (trade name EVAL), with a high resistance to diffusion, so that the oxygen diffusion is reduced to about $1 / 100$;

Manufacturer: Wirsbo and hence Ecoflex and LOgstor as well.
2. Separation with 1 or 2 metal foils

Manufacturer: Brugg Kabel
3. No barrier

Manufacturer: Flexalen

Today, it can be said that Flexalen is moving towards the first strategy so that the question "barrier yes or no?" will not be asked any longer.

Specialists of material testing reservedly assess the reliability of oxygen barriers as positive, e.g. [7]. However, further investigations requiring much effort are still being carried out since the effects of district-heating operating data cannot be reliably assessed. The first influence is the temperature. most investigations up to now have been carried out at $50^{\circ} \mathrm{C}$. Since the diffuse transport of materials follows an Arrhenius function, further measurements of the oxygen permeability up to $90{ }^{\circ} \mathrm{C}$ would be advisable.

Secondly, proof of the stability of the diffusion barrier is also required. Temperature changes can damage foil linings or perhaps the coatings as well. Furthermore, the stability of the coatings in a warm, damp atmosphere should also be checked. At present, special investigations for this are starting in Germany, whereby the manufacturers are also involved.

4.3 Water Vapour Diffusion

A danger to the pipeline as a result of water vapour which is forced outwards through the wall of the pipe was first noticed about two years ago. Due to the fall in temperature from the interior to the outside of the pipe, the water vapour condenses in the thermal insulation and could lead to a dangerous rise in the heat conductivity.

An influence on the system as a result of water vapour is seen to be less serious than as a result of oxygen. The most important reasons for this are that wetting has not yet been noticed in systems operated for many years, that dampness can hardly danger the function of the pipeline and that a certain rise in the heat losses is acceptable as long as investments for the system are low. However, calculations which show notable amounts of damp which escape through the pipe wall during one year of district-heating operating conditions, should not be ignored. Finally, one manufacurer (Kabel Brugg, see Section 3.3) even measured the lifetime of his system by means of this water permeability.

However, in comparing the systems regarding this danger, it becomes apparent that they must be very differently susceptible to this phenomenon. In insulation which is enclosed on all sides, the quantity of water will continue to rise with the period of operation, whereas in other systems certain quantities of water can be collected in the existing cavities perhaps without any damage, or the pipes are so arranged that water coming in can also go out again. These considerations are pure speculation and have not been checked by investigations. For this reason, systematic experiments are now starting in Germany. First quantitative results are already available from Demmark [3]: the system could be so designed that no water is collected in the insulation. This deduction has not yet been conclusively drawn from material published at present. Industry involved in the project (Logstor) intends providing supplementary information when the present investigations are completed in summer 1992.
4.4 Behaviour of Materials when Using Friction Reducing Additives

Whereas district heating networks today are still exclusively operated with conditioned water, for the future there is a possibility of putting additives in the water. Additives reduce the pressure losses for the circulated water. Since, on the one hand, additives are surface active and, on the other hand, it is well known that surfactants can negatively affect the material properties of plastics, the question is whether problems are to be expected in this situation.

The tensides Dobon G and Habon G from Hoechst AG have proved successful in district heating networks up to now. Final, quantitative statements on the influence of these tensides on material characteristics cannot be made till the systematic tests have been completed. They started in Germany early 1992 [2] and will probably be completed at the end of the year or beginning of 1993. The pipe materials PE-X and PB are being tested as well as GF-UP for temperatures between 70 and $110{ }^{\circ} \mathrm{C}$ and pressures of about 6 bar.

First considerations, analyses of literature and comparison with similar applications allow a positive result from the experiments to be expected. It appears as though the pipe materials PE-X and PB are not damaged by friction-reducing additives at temperatures up to 90 品 [2].

On drag reduction there can shortly be expected a special report titled "Advanced Fluids" [10].

These expectations are in contradiction to shortly published Swedish results from Studsvik Energy [11].

Their first experiments have shown that Habon G reduces the strength of $\mathrm{PB}-\mathrm{X}$ material and promotes brittle fracture.
4.5 Provisional Sealing of the Pipe by Squeezing

It is sometimes necessary to block off sections of a district heating network to be able to make new connections or to undertake maintenance work. The pipes are usually closed using shut-off valves. In the case of plastic pipelines of VPE or PB, the idea arose of provisionally closing the pipe by squeezing the medium pipe with an appropriate tool. In this way, the expensive fittings in the network, which require a lot of maintenance, are no longer required. From experience it has been found that squeezing the pipe does not lead to breakage, since plastic is very tough and deformable. However, it has not been decided whether on not the pipe is damaged too much by this process.

Squeezing is done with special tools. A decision on the admissibility can only be made when creep tests with squeezed pipes have been carried out. Manufacturers have been asked to do this. In addition, material tests will be carried out at a German testing institute in the second half of 1992.

It still has to be determined under which conditions squeezing can be allowed, i.e. pipe geometry (nominal diameter, wall thickness) and operating data (pressure, temperature). If necessary, supporting sleeves could be developed to mechanically take the load off a damaged pipe and to serve as a mark so that the medium pipe is not squeezed again in the same place.
4.6 Laying in Horizontal Bores

In recent years, plastic pipes have been successfully laid for gas pipelines using horizontal drilling techniques. This method seems to be promising for district heating pipelines particularly when the supply and return pipes are enclosed in the same jacket pipe and laying lengths are not too long.

The main problem is the handling of the tension when the pipe is pulled into the drilled tunnel, because plastic pipes can only withstand relatively low longitudinal forces. Systems with corrugated jacket pipes are unsuitable for being pulled into position.

It is logical that Kabel Brugg is making particular efforts in this pulling-in technique because the NTS-Ferwag system has an increased longitudinal strength as a result of the metal lining.

Kabel Brugg is cooperating with Flowtex to form a service. The Flowtex process is seen as suitable because the drill hole has a good sliding behaviour as a result of the bentonite used as flushing agent. The principle of the process is shown in Fig. 4-2.

Fig. 4-2: Principle of the Flowtex Horizontal Drilling Process
5. Cost Situation for Plastic Systems in 6 European Countries

Laying costs of the 5 flexible pipe systems described will be determined in the following section and compared with those of today's standard plastic jacket pipe system (KMR). From the individual prices, construction costs of the systems have been calculated for each country considered and compared.
5.1 Procedure

Starting from a typical routine structure for the subdistribution, the individual construction prices were obtained from the manufacturing companies. The required trench dimensions were determined for each laying process and the earthwork quantities calculated. Together with the civil engineering prices in the countries involved, these gave the engineering costs specific to the system.

The cost calculation was based on the systematic used in an earlier IEA study [1] so that results of both tasks can be compared for plastic systems. The standard design with German prices was used for the reference system KMR.

The individual working steps to determine laying costs are:

1. Determination of a typical routine structure, to characterize the subdistributionm.
2. Collection of the prices of material of all important components of the laying system in the currency of the manufacturer.
3. Collection of the assembly prices and calculation of the necessary time required with the hourly rates.
4. Determination of the earthwork quantities using the cross-section of the trench required by the system.
5. Collection of the specific civil engineering prices in the countries considered.

The laying costs determined from the data given above are determined for each country considered. The laying costs worked out here offer a quantitative comparison between the pipe systems. Costs which are not dependent on a particular system, e.g. for planning, management of the site and buildings on the building site, have not been considered here, so that the actual laying costs are about 10 to 20 F higher.
5.2 Basic Costs
5.2.1 Routine Structure of the Subdistribution

The calculation of the costs for material, assembly and earthworks is carried out for a typical subdistribution network. This consists of straight lengths which are laid through open land and roads. In addition, changes in direction, branches and a coverage of 0.6 m over everything has been considered.

Components of the Routine Structure

Main Pipeline:

70 m pipeline	DN 25	in open land
30 m pipeline	DN 25	in area of roads
70 m pipeline	DN 40	in open land
30 m pipeline	DN 40	in area of roads
35 m pipeline	DN 80	in open land
15 m pipeline	DN 80	in area of roads

Branches:

5 branches	DN 25	to main pipe DN 40
5 branches	DN 25	to main pipe DN 25
Branch length	8 m	

Changes in Direction 90° :

2 DN 25
2 DN 40
1 DN 80

Changes in Direction $10-45^{\circ}$.

2 DN 25

2 DN 40
1
DN 80

Coverage: $\quad 0.6 \mathrm{~m}$

In addition, the following parameters had to be determined for each laying process:

- number of axial joints
- cross-section of trench
- method of making service connections (looping or branch)
- effort required for compensators
- bridges over the trench

5.2.2 Specific Civil Engineering Costs in the Countries Involved

Table 5.2-1 shows the specific civil engineering costs obtained for the countries involved. These costs were given to us by individual supply companies and could vary regionally within the countries.

Table 5.2-1 Specific Civil Engineering Costs

		$\begin{aligned} & \text { Dermark } \\ & *=0 \times 8 \end{aligned}$	$\begin{aligned} & \text { Sermary } \\ & =-D H \end{aligned}$	Finland * - Fix	$\begin{aligned} & \text { Sueden } \\ & =-5 K R \end{aligned}$	$\begin{gathered} \text { Austria } \\ -=15 \end{gathered}$	Siritzer. land * - SFR
Excavation incl. edging and surface (bitumen cover 20 cm)	*/m ${ }^{3}$		150.-	100,-	155,-	245,-	71,50
Speil in open coantry	\bullet / m^{3}		50,-	24,-	80,-	180,-	18,-
Linfing (horlzontal)	*/ $/ \mathrm{m}^{*}$		25.-	24,-	-	150,-	18,-
Filling - new material (Incl. delfivery)	\cdot / m^{3}		55,-	24,-	250,-	240,-	56,*
- atterial from internediate storage (incl. transport)	*/m ${ }^{3}$		55.-	16.*	130.-	120,-	18,50
- miterial stored on the side	\cdot / n^{3}		22,-	8,-	65,-	50,-	12,-
Renaking the surface -20 cm bitumencover	*/ $/ \mathrm{m}^{*}$		120.-	100,*	177.-	340,-	100,-
- open country	*/m ${ }^{\text {a }}$		15.-	16.*	60,-	45,-	5.-
Bridges for vehicles, $4 \mathrm{~m}^{\text {d }}$	*/bridge		600.-	400,-	1650,-	400,-	150, -
Hourly wage for skilled workmen (fincl. all surcharges)	*/h		60,-	100,-	250,-	340,-	66,-

5.2.3 Costs of Materials

Table 5.2-2 shows the material costs (in the currency of the country of manufacture) as given by the system manufacturer or the user for the components of the subdistribution network for this study. All prices quoted are without valueadded tax incl. transport.

Table 5.2-2 Material Costs in Currency of the Respective Country

			ECOFLEX * $=$ FMK	$\begin{gathered} \text { LOGSTOQR } \\ -=0 K R \end{gathered}$	gRUGG * $=$ 5月R	$\stackrel{\text { FLEXALEK }}{-=A S}$	$\begin{aligned} & \text { KIRS80 } \\ & \cdot=-5 K R \end{aligned}$	$\stackrel{Y M R}{*}=D \mathrm{M}$
Pipe	CN 25	*/nlength	89,-		68,-	575,-	196,-	48,-
	[N 40	*/n- length	127, $=$		152.-	770,-	271,-	58,-
	DN 80	*/8length	391.-		214,40 5)	1700,-	610,-	95,-
Bend 90^{*}	DN 25	*/fittin 9	1)		176.* 2)	2880,- 2) 4)	1)	65,-
	ON 40	*/f- itting	1)		210,- 2)	3100, - 2) 4)	1)	75,-
	6N 80	*/f- itting	1)		- 2)	3460,- ${ }^{\text {2) }}$	1)	125,-
Axial Joint	DN 25	*/f- itting	222.-		320,-4)	2160, -3) 4)	410,-	15,-
	DN 40	*/f- itting	356,-		222.40	2300, - 3) 4)	955,-	18,-
	DN 80	*/f- itting	892.-		$361.60{ }^{5}$	2330,- ${ }^{\text {3) }}$	960,-	20,-
T-fitting	ON 25/25/25	*/f- itting	374*-		310.40	2280,- ${ }^{\text {4) }}$	800,-	190,-
	DS 40/40/25	*/f- itting	550.-		615,20	2740,-	1500,-	205,-

1) Not necessary
2) This is mormally carried out by bending. However formed pleces are available
3) Medium pipe folnt with electric welding sleeves
4) Double pipe
5) DN 65, BRUCt has a max. DM 65 in its programe

5.2.4 Assembly Costs

Assembly costs of the components of the comparative networks are given in Table 5.2-3. The pipe manufacturers were asked to provide information on the costs for the flexible systems, but costs for the KMR system were taken as standard values from German engineering planning figures. Assembly costs were converted using the corresponding hourly wage for skilled workmen in the respective country into assembly times. In this way the assembly costs can be calculated without any inaccuracy as a result of currency conversion.

Table 5.2-3 Assembly Costs, Assembly Time (Man-Hours)

			$\begin{aligned} & \text { ECOFLEX } \\ & \because \cdot F \operatorname{Fix} \\ & \hline \end{aligned}$	$\begin{gathered} \angle 065 T 0 R \\ \rightarrow-\infty 0 t i \end{gathered}$	$\begin{aligned} & \text { BRUGG } \\ & *=S \mathrm{FR} \end{aligned}$	$\begin{aligned} & \text { FLEXLEM } \\ & * A S \\ & \hline \end{aligned}$	$\begin{gathered} \text { YiRsso } \\ =-508 \end{gathered}$	$\stackrel{O M}{O}$
Pipe	DW 25	*/m-length h/m-length	$\begin{array}{rr} 16,- \\ 0,16 & 2\} \end{array}$		$\begin{aligned} & 5,-37 \\ & 0,07 \end{aligned}$	$\begin{gathered} 30,- \\ 0,09 \end{gathered}$	$\begin{gathered} 45,{ }^{1)} \\ 0,18 \end{gathered}$	$\begin{aligned} & 46,- \\ & 0,7 \end{aligned}$
	DN 40	*/s-length h/m-length	$\begin{gathered} 16, * \\ 0.16 \end{gathered}$		$\begin{aligned} & 7.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} 45,-13 \\ 0,13 \end{gathered}$	$50,7^{1)}$	$\begin{aligned} & 52,- \\ & 0,87 \end{aligned}$
	OM 80	*/m-length h/m-length	$\begin{gathered} 23,- \\ 0,23 \end{gathered}$		$\begin{aligned} & 7,-4) \\ & 0,11 \end{aligned}$	$100,-$	$\begin{gathered} 62,{ }^{11} \\ 0,25 \end{gathered}$	$\begin{gathered} 74, ~ \\ 1,23 \end{gathered}$
Bend $90{ }^{*}$	OM 25	*/fitting h/fitting	-		-	$\underset{3,35}{1140,{ }^{3)}}$	-	$40,-8$
	(1)40	-/fitting h/fittiog	-		*	$1380,{ }_{4,05}^{3)}$	*	$\begin{aligned} & 45,- \\ & 0,75 \end{aligned}$
	On 80	*/fitting h/fitting	*		*	$\begin{array}{r} 960.8 \\ 2.82 \end{array}$	-	$\begin{gathered} 55,- \\ 0,92 \end{gathered}$
Axial Joint	O 25	-/fitting h/fitting	$\begin{array}{r} 153,- \\ 1,53 \end{array}$		$\stackrel{104}{1,58} 3$	$\begin{gathered} \left.700 .{ }^{3}\right) \\ 2.06 \end{gathered}$	-	$\begin{gathered} 95,- \\ 1,58 \end{gathered}$
	OM 40	*/fitting h/fteting	$\begin{gathered} 153,- \\ 1,53 \end{gathered}$		$\begin{gathered} 71,- \\ 1,08 \end{gathered}$	$\underset{2,41}{820,-3)}$	-	$\begin{gathered} 100,- \\ 1,67 \end{gathered}$
	OV 80	-/fitting h/fitting	$\begin{array}{r} 184, * \\ 1,34 \end{array}$		$\underset{\substack{71,-68}}{4)}$	$\begin{aligned} & 960_{+}- \\ & 2.82 \end{aligned}$	-	$\begin{array}{r} 130,- \\ 2,17 \end{array}$
T-plece	OW $25 / 25 / 25$	s/fitting h/fitting	$\begin{array}{r} 232,3 \\ 2,32 \end{array}$		$\begin{aligned} & 132, \\ & 2,09 \end{aligned}$	$\begin{gathered} 1670,{ }_{4,91}^{3)} \end{gathered}$	-	$\begin{aligned} & 55,7 \\ & 0,92 \end{aligned}$
	ON 40/40/25	*/ftttivg h/fittiog	$232,72,2)$		$\begin{array}{r} 132,-00 \end{array}$	$\begin{gathered} 2030,{ }^{3}, 97 \end{gathered}$	-	$\begin{gathered} 65,- \\ 1,08 \end{gathered}$

1) incl. T-fitting and axial joint
2) Not avatlable; values taken from at an adapted according to the price development of material costs.
3) Double pipe
4) 0 N 65
5.2.5 Cross-Section of the Trenches, Earthwork Quantities

For each pipe system, details of the required trench measurements were collected for the appropriate nominal diameter of the subdistribution network. The earthwork quantities could then be worked out for each laying process.

Figure 5.2-1 shows the construction of a trench for pipe laying. The figure will help to explain the points in Tables 5.2-4 a-f of the trench cross-section for the pipe systems.

Fig. 5.2-1: Construction of the Trench for Pipe Systems Laid in the Ground

Table 5.2-4 a: Trench Cross-Section, Earthwork Quantities ECOFLEX

		D4 $25^{2)}$	ON 40 ${ }^{\text {2) }}$	On $80{ }^{3)}$
a	\#	0.1	0,1	0.1
b	m	0,36	0.4	0.7
c	n	0,1	0.1	0.1
d	m	0,16	0.2	$2 \times 0,2$
e	m	-	-	0.1
f	n	0,2	0.2	0.2
Spoil	$n^{3} / \mathrm{m}^{1)}$	0.31	0.36	0.63
Transport of waste	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0.166	0.2	0,35
sand filling	$n^{3} / n^{1)}$	0.146	0.169	0,287
Filling with spoil	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0,144	0.16	0,28
Surface reconstruction	$\mathrm{n}^{2} / \mathrm{n}^{1)}$	0,36	0.4	0.7
1) per m-plpeline				
2) Double pipe systen				
${ }^{3)}$ single pipe systen				

Table $5.2-4$ b: Trench Cross-Section, Earthwork Quantities LÖGSTÖR

		05 25	ON 40	BH 80
a	m	0.1	0.1	0.1
b	m	0.45	0.52	0,66
c	T	0.1	0.1	0,1
d	-	$2 \times 0,077$	2×0.11	$2 \times 0,18$
e	*	0.1	0.1	0.1
f	IT	0.1	0,1	0.1
Spoil	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0.36	0.42	0,58
Transport of waste	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0,13	0,16	0.25
Sand filling	$m^{3} / m^{1)}$	0,12	0,14	0.20
Filling with spoil	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0.23	0.26	0,33
Surface recontruction	$m^{2} / m^{1)}$	0,46	0.52	0.66

Table 5.2-4 c: Trench Cross-Section, Earthwork Quantities BRUGG

		DK 25	DK 40	DN 65
a	\pm	0,1	0.1	0.1
b	π	0.52	0.55	0.55
c	m	0,1	0.1	0.1
d	n	$2 \times 0,11$	$2 \times 0,125$	$2 \times 0,125$
e	m	0,1	0,1	0,1
f	m	0,1	0.1	0,1
Spoll	$m^{3 / m} / m^{1)}$	0.42	0,51	0.51
Transport of waste	$m^{3} / m^{1)}$	0.16	0.18	0.18
Sand filling	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0,14	0.16	0.16
Fllling with spoil	$m^{3} / m^{1)}$	0.26	0.33	0.33
Surface recontruction	$\mathrm{m}^{2} / \mathrm{m}^{1)}$	0.52	0.55	0.55

Table 5.2-4 d: Trench Cross-Section, Earthwork Quantities FLEXALEN

		ON $25^{2)}$	DF 400^{2})	DN $80^{-3)}$
a	m	0.1	0,1	0.1
b	m	0,36	0.4	0.7
c	m	0.1	0,1	0.1
d	m	0,16	0.2	2×0.2
e	m	0.1	0.1	0.1
f	$=$	0.1	0.1	0.1
Spoil	$m^{3} / m^{1)}$	0.3	0.36	0.63
Transport of waste	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0,13	0.16	0.28
Sand filling	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0,11	0,13	0.25
Filling with spoil	$\left.n^{3} /=1\right)$	0,17	0.2	0.35
Surface recontruction	$\mathrm{n}^{2} / \mathrm{m}^{1)}$	0,36	0.4	0.7
1) per m-pipeline				
2) Double pipe systen				
3) Single pipe system				

Table 5.2-4 e: Trench Cross-Section, Earthwork Quantities WIRSBO

		DN $25^{2)}$	DS 40 ${ }^{2}$)	bi $80{ }^{2)}$
${ }^{1}$	n	0.1	0.1	0,1
b	n	0.4	0,4	0.6
c	m	0.15	0,15	0.15
d	m	0,163	0,186	$2 \times 0,185$
e	m	-	-	0,08
f	m	0.2	0.2	0.2
Spoil	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0.37	0.37	0,56
Transport of waste	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0.2	0.2	0,32
Sand filling	$\mathrm{n}^{3} / \mathrm{m}^{1)}$	0.2	0,2	0.29
rilling with spoil	$n^{3} / n^{1)}$	0.17	0.17	0.27
Surface recontruction	$\mathrm{n}^{2} / \mathrm{m}^{1)}$	0.4	0.4	0.6
1) per w-plpeline				
2) Double pipe systen				
3) Single pipe system				

Table 5.2-4 f: Trench Cross-Section, Earthwork Quantities KMR

		DN 25	DE 40	D\% 30
a	n	0.2	0,2	0.2
b	n	0,73	0.71	0.87
c	n	0.1	0,1	0.1
d	n	2×0.09	2×0.11	2×0.16
e	π	0,15	0.15	0.15
f	\pm	0.1	0,1	0,1
Spoil	$m^{3 / 8} / \mathrm{m}^{1}$	0,58	0,62	0,75
Transport of waste	$\mathrm{n}^{3} / \mathrm{n}^{1)}$	0.21	0,24	0,31
Sand fllling	$n^{3} / m^{1)}$	0,20	0,22	0,27
Fllling with spoll	$\mathrm{m}^{3} / \mathrm{m}^{1)}$	0.37	0,38	0.44
Surface recontruct ion	$\mathrm{m}^{2} / \mathrm{m} \mathrm{m}^{1)}$	0.73	0.77	0,87

5.2.6 Exchange Rates

The following table was used to convert the price of materials into the currency of the respective country. (Status in April 1992):

Currency Rate

Danish Kroner	DKR	25.815
Finnish Marks	FMK	36.74
Austrian Shillings	AS	14.228
Swedish Kronor	SKR	27.615
Swiss Francs	SFR	109.780
Conversion Unit	DM	100.000

5.2.7 Factors which are Dependent on the System

In addition, other system specific factors are required to calculate the laying costs.

- Service Branches

In the case of flexible pipeline systems there exists the possibility to make service branches by the looping-in method. Supply and return pipes are laid in a curve from house to house.

Looping-in of the house connections is used in all flexible systems because looping-in appears to be cheaper than branches with tees. In this case the branch technique costs are calculated with 12 m length of pipe instead of 8 m branch length in the nominal diameter of the main pipeline.

- Number of Axial Joints (Sleeves)

Plastic medium pipe systems are normally delivered in long lengths, e.g. 100 m on a cabel drum, so that axial joints only occur in long pipelines. The case of subdistribution, considered here, with connections from house to house can virtually be completed without sleeves. Axial joints have been ignored in the cost calculations for flexible pipe systems.

A delivery length of 12 m is assumed for plastic jacket pipes. For the pipeline lengths and branches given here,

72 sleeves DN 25
52 sleeves DN 40 and
16 sleeves DN 80
are assumed for KMR.

- Effort Required for Compensators

In the case of plastic jacket pipes, additional compensating elements are required when laying the pipes. The costs for compensators has been calculated as 8 of of the direct construction costs compared with compensator-free laying of plastic medium pipes.
1

- Trench Bridqes

In general pipe trenches for KMR remain open longer than those for plastic medium pipes. For this reason, one trench bridge per 100 m pipeline has been assumed.

A cost calculation was carried out for each pipe system and for each country involved taking into account the above mentioned basic data and the system specific factors.

The following laying costs are not intended for the calculation of the actual laying costs in a subdistribution network. The calculated laying costs are to be regarded as comparative costs in order to be able to assess comparatively the different systems from the different countries. The civil engineering costs given here are also affected by relatively large uncertainties.

The costs for civil engineering were determined by making enquiries at only one address per country so that the data do not have to be representative of the country's average.

Material prices were given by the system manufacturer and were given in the currency of the country in question. Such prices are market prices and could be different in the different countries for the same product. Since not all systemis considered are available on the market in all countries, calculations were made using the prices given in the country of the manufacturer and appropriately converted into the currency of the country concerned using the exchange rates.

The results of the cost calculations are given in the following tables, (Tables $5 \cdot 3-1$ to $5 \cdot 3-6$). A summary of the results is given in Table 5.3-7 in which the laying costs of the plastic medium pipe systems are presented as percentages of the reference plastic jacket system. The very low level of the Finnish product Ecoflex can partly be explained by the strong devaluation of the Finnmark in early 1992. In addition the Finnish District Heating association commented that the Finnish civil engineering costs and also assembly costs seen too low to be average values.

	Molend		lod		isex Amentros im	Tod	Molyd	NTSPEWAGFID Anentb	Tod	Mowd	fachier 	Tod	Mclend	whscomborex 	foud		Numbly,	Tod
00225 Opme Couny																		
ON2 25 Lude toos																		
ONAO Opme Coury																		
Ow 40 Under focte																		
ON60 Open Conty																		
DNB0 Unler iboch																		
Aocter ON $25 / 25$																		
Hoximi CN $40 / 25$																		
Sord Mo.DN2S																		
Bend 40,00450																		
Bend 10.45, Dev 25																		
bond 1045', DNa																		
bed 1045', [w 80																		
Stacd																		
Sasatat br conp																		
load																		

		Mowel	$\begin{gathered} \text { ECOHAB } \\ \text { A ments) } \mid \text { Out ing } \mid \end{gathered}$		Tod		$\begin{gathered} \text { UMDX } \\ \text { Asumbly } \mid \text { Out Eng } \mid \end{gathered}$		Tod	NTSHEWMGHIEX					$\begin{gathered} \text { HDCAIEN } \\ \mid \text { Arambl, } \mathrm{O}=1 \mathrm{Fm} \mid \end{gathered}$		loded	$\mid \text { Mowid } \mid$	WRSBOMMEOFX			Miecid		,					
		Moreld			Ansenth,				Cuting	Toed	Anambly	Cot fig	Tod				O.4 8 gg		Foed										
beas	Open Couriry		2288	07		2827	5788	4753		1218	3014	e995	5225	294	3515	0034		977	178	2568	В¢о7	3790	756	3446	7092	3360	3233	4871	11485
Del25	Uncler flooch	980	287	1275	4544	2037	522	3820	6270	7270	125	4404	0770	2454	162	3134	5751	1024	324	3847	5705	1440	1385	8127	8953				
Sel40	Open Courly	3206	072	3277	7215	8512	1512	3515	13540	11000	420	4116	16217	7609	545	2048	11284	5239	840	3440	0526	4000	3654	5250	12964				
DHa0	Uncier floch	1799	287	1744	5432	3648	6411	4404	3700	5005	180	5026	10212	3287	215	3046	7107	2245	360	384	6452	1780	1560	0535	9841				
Dev 80	Cpen Corrly	5027	233	2850	8301	10374	1050	2430	13817	8237	231	2058	10527	3466	600	2710	1178	5896	525	2621	0043	2775	2583	1170	9078				
Sx 80	Under loodit	2154	207	2nes	3630	4426	450	2054	7 m 1	2530	∞	2513	6142	3628	261	3200	700 t	2527	725	2004	\$060	1425	1107	3853	6315				
Burcher	Des 25/25	1901	576	2423	4961	4.074	1044	2583	7701	440	257	3042	$7 / 44$	4009	384	2201	7434	2248	648	2954	6850	2020	2400	2763	9000				
Burches	DNa/23	2700	576	2800	6184	7206	1296	3013	11805	10011	300	3528	13900	0574	407	2013	Q0s5	4491	720	2954	6168	$97 \% 0$	2496	3000	8460				
Fiond	90. DN 25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	250	160	0	470				
Hend	$90, \mathrm{DN} a 0$	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	-	300	160	0	480				
flond	$9 \mathrm{OH}, \mathrm{ON} \mathrm{BO}$	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	250	110	0	300				
Bend	1045. DH25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	260	160	0	420				
Bend	1045% ON 40	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	300	160	0	480				
fond	1045, 0×180	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	250	110	0	360				
Subised		19060	3702	24477	alill 10	45079	7740	25744	78563	50410	1962	28177	80550	42716	2962	23132	C0832	20061	4398	20026	59488	24700	19320	35903	79681				
Esarecrilor monp		-	*	-	0	\cdots	-	-	0	-	-	-	0	-	-	-	0	-	-	-	0	-	-	-	25442				
Towl		-	-	-	48110	-	-	-	78563	-	-	-	80550	-	*	-	69332	-	-	-	50496	-	-	*	105123				

		Motend	$\begin{gathered} \text { ECOHitx } \\ \mid \text { Asenth } \mid \text {.om ing } \end{gathered}$		Iokd	Marerid	$\begin{gathered} \text { iffox } \\ \mid \text { Aumedi, } \mathrm{OM} \mathrm{Eng} \mid \end{gathered}$		Fobd	NTSFfiwhoriex							Told	Menid	WRSEOMEOTEX			Minerd	row 		lod			
		Mocral			Anantor				OM69	Tod	Aluathy	Onting	Toul															
DN 25	Opes Courty		0230	1120		1528	8978	12938		2089	1008	16036	14222	490	199	16850	15509	030	1405	17525	10314	1200	1136	13411	9145	5700	2087	17223
CN25	Unde lioah	260	478	2209	5419	\$544	870	2095	9110	6095	209	2096	9003	coll	270	2193	914	4420	540	2830	7500	3019	2300	4314	10543			
DN40	Opes Coutry	8800	1120	1767	1177	23170	2520	1937	27620	11792	700	2278	34721	20870	909	1052	23438	14201	1.400	1836	17497	11050	6000	2890	30030			
CN, 40	Unice tiods	3810	470	2584	6974	9030	1080	3008	14108	13025	300	3504	17439	ena	300	2536	18873	6111	\$00	2839	9350	4735	2010	4592	11938			
CN60	Open County	13085	308	1534	16024	24114	1750	1327	21191	22427	365	1114	22921	29045	1014	1404	25574	10050	975	1304	18319	9050	4305	1727	15082			
DNeo	Uncte floch	5805	345	2257	8407	120*9	750	2001	14800	9609	105	1732	11520	9876	435	2277	12539	care	275	1902	9245	3870	1845	2091	44.5			
Bracter	Or425/25	5300	000	1310	7610	11089	1740	1430	14260	12191	420	1600	14271	12362	340	1204	13107	\# 840	1080	1574	11495	$10 \% 7$	4000	1535	15933			
Broctes	OReam/2s	7020	900	1510	10000	19680	2100	1000	23651	27250	000	1910	20701	17904	760	1415	20090	12233	1200	1574	14098	10005	4100	1651	15010			
ford	90, Den 25	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	-	0	0	Na\%	261	0	975			
Soud	SOT, DN 40	0	0	0		0	0			0	0	0	0	0	0	0	0	0	0	0	0	816	300	0	1116			
Bend	90, [N 80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	060	184	0	864			
Send	1045. DN 25	0	0	0	0	0	0			0	0	0	0	0		0	0	0	0	0	0	707	200	0	975			
Beod	1045\%, DeN 40	0	0	0	0	\bigcirc	0	0		0	0	0	0	0	0	0	0	0	0	0	0	816	300	0	1116			
Bend	1045\%,06480	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	060	184	0	804			
Subat		54110	0270	14757	7512	122007	12900	15890	151477	137210	3270	17706	157060	110272	4970	14101	128343	79101	7330	15485	101917	07392	32214	22000	121000			
Thay coun for comp		*	*	*	0	*	-	-	0	-	-		0	*	-	-	0	-	\sim	*	0	-	*	-	42881			
toded		*	\cdots	-	75137	*	-	-	151477	*	-	-	157080	*	-	-	139343	*	-	,	101917	*	*	-	184578			

		Moienid	ECOHEX 		Iodd		$18+5$ Aumed.forifrg		Tobd	NTSEENAGFIEX				HEOLEN Mownal Ausitiy Lur Eng			Tod	WESAOMEOFX				Moneral			Tod			
					Mowrid				Anerth,	Ont fing	Toul	Moletd	Anemby				OMf 7	toxd										
60425	Opes County	1297	2000	802a		19114	17210	5075		8322	30608	19019	1225	96 al	29925	20717		1975	7119	29431	1778	3150	9915	20785	12105	13474	13482	30122
OH2 25	Uride koodh	3551	1199	5401	10152	7375	2175	\$901	15542	8108	525	6010	15557	8807	o7s	4049	14551	S8BO	1350	6.880	12710	5213	5774	9645	20637			
ONAO	Open Courry	11825	2000	9271	23096	30821	0300	90el	40802	42290	1750	11104	55208	27769	2274	1303	39437	11970	3500	9015	32345	14069	15225	14553	44477			
ONa 4	Unde kooh	soce	1199	0187	12455	13200	2700	6919	2282e	18124	750	7 tab	26738	11901	974	3911	18067	8130	1500	6.886	16110	6709	0525	10334	23159			
Den 80	Ores Corry	18203	2012	5035	29252	27797	4975	ten2	48454	29825	902	5584	36972	30654	259	7540	40733	21350	2187	7491	31029	12038	19702	E7S5	31556			
ON60	Under Roodi	7601	602	5381	14045	10027	1875	4578	22581	1272	412	3012	17127	1313	1087	5104	19704	9150	917	4003	14041	5159	4612	8122	15004			
Buchat	CN+25/2S	7103	2400	6880	16383	14751	4350	7133	26235	10216	1050	3798	25504	17774	1350	6102	25226	11760	2700	8499	22099	13830	10000	7704	31534			
Borcles	ON $40 / 25$	10136	2400	7047	20483	26418	5400	8200	40110	36248	1500	9873	47321	23802	1949	7104	32946	10250	300	8499	27750	14373	10400	6316	33009			
Hend	(0), DN 25	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	441	870	0	1611			
Berd	$\varphi 0$, Del 40	0	0	0		0	0	0		0	0	0		0	0	0		0	0	0	0	1008	750	-	1836			
Sind	90%, LeN 80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C05	460	0	1365			
Bond	10.45, DN 25	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	91.	870	0	1011			
Send	1045:, DNa	0	0	0		0	0	- 0		0	0	0	0	0	0	0	-	0	0	0	0	1080	750	0	1836			
Bend	1045', DN 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	cos	450	0	1365			
Subod		71976	15875	57131	144783	163211	32250	57717	253179	182516	8175	89020	253711	154504	12425	52318	219408	105220	13325	02160	185731	89045	00535	79913	24093			
Laba cous for comp		-	- -		0	-	-		0	-	-		0	-	-	*	0	$=$	-	*	0	-	*	-	6162			
Foud		-	-	-	124713	-	-	-	253179	*	-	-	253711	-	-	-	219008	-	-	*	185731	-	-	- -	345255			

		Moers	ECOHEX 		Iod	Mcivid			Tad		NASFEWMGALEX Amenth		lod	fowien				Wiscommend				low							
		Mowd			Ammer,				0460				lod	Mowid	Ausebly		lod	Mcend	Acumbly	O4teg	Toded								
DN2S	Open Carty		10045	3809		9020	28810	33404		OP01	Q534	40940		30721	1000	11088	a 4 as	40950	2142	9085	50477	26030	4784	10007	41911	23012	11320	(5a) ${ }^{\text {d }}$	STM\%
ON2S	Unde kat	0093	1011	7610	10141	14316	2058	8859	20133	1573	713	10.7	\$ 26.24	17250	918	7230	25404	11412	1836	0074	2223	10119	123	14.200	22181				
ON4O	Open Connty	22052	3808	10015	370\%	5 Se 23	${ }^{85} 6 \mathrm{~A}$	11089	72470	22004	2380	13000	9767	\$3000	3003	9876	cos70	36820	460	10097	52577	28531	20706	10007	OSele				
[0N 40	unde koas	9836	1631	H002	20131	25639	3072	10172	30443	35178	1020	11437	47030	23100	1326	8340	3277	15780	2000	8074	20794	12227	8874	15140	30242				
On 60	Open Cours	35392	273	9052	47022	72888	5050	7050	36189	57801	1309	dsor	05704	96500	3450	95ch	71510	41439	2075	1277	52002	23360	14637	10001	48004				
ONfo	Unde loode	13142	1173	7548	23054	31100	2550	B7os	40424	24810	501	5718	31050	25500	140	7383	34352	17750	1275	0748	28 F 3	10014	0273	380	25154				
bouctes	0w2s/2s	1377	3204	7651	24002	28632	5916	1172	42720	2105	1428	9504	42407	34500	1636	*0, 0	4720s	22825	3072	9476	3573	20844	13000	8822	49206				
Borctes	DNa0/2s	1903)	3264	M84 1	3178	51277	734	QSO4	61123	2035	2040	11150	83548	15200	2552	1200	57000	31560	0600	9426	45000	27ece	14143	9400	\$1532				
lend	50, Den 23	0	0	0	0	0	0	0	-	0	0	0	O	0	0	0	0	0	0	0	0	1827	911	0	273				
bend	$\mathrm{cOF}_{6} \mathrm{ON} 40$	0	0	0		0	0	0		0	0	0	0	0	0	0	0	\bigcirc	0	0	0	2100	1020	\bigcirc	3128				
Bend	90.0000	0	0	0	0	0	-0	0	\bigcirc	0	,	0	0	0	.	0	0	,	0	0	\bigcirc	1756	625	0	2302				
Sent	1045, DN 25		0	0		0	0	0		\bigcirc	0	0	0	0	0	0	0	0	0	0	0	1827	911	0	2738				
boud	1045\%, DN 40	0	0	0		0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	-	0	2108	1020	0	3128				
Bend	1045 ${ }^{\text {c }}$ ON 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1756	025	0	2302				
Stad		130704	21318	OQ 514	229537	310780	43800	71740	432305	354258	11118	78580	449962	300200	10898	04332	381430	204228	24922	73621	302971	173000	109527	98375	382101				
tans coso lo momp.		-	-	-		-	-	-	0	-	-	-	0	-	-	*	0	-	-	-	0	-	-	-	13590				
lad		-	-	-	220537	-	-	-	432305	-	-	-	443962	-	-	-	381430	-	-	-	302071	-	-	-	317672				

Table 5.3-7 Laying costs of the flexible systems as percentages of the costs of the reference KMR system

	ECORIEX	IReex	NISftwMGGHEX	HDWild	Weseomeoped	10N
Denmark						
Germany	46	75	77	66	57	100
Finland	46	92	96	82	62	100
Sweden	42	73	74	64	54	100
Austria	44	84	86	74	59	100
Switzerland	41	72	72	62	52	100

6. Consideration of the Lifetime of Pipes of PE-X and PB
6.1 Definition of the Problem

Since the system manufacturers give different limiting loads for their pipe material to some extent, even though they use the same pipe material, a consideration of the lifetime of the materials used was undertaken.

The investigation intended to determine what lifetime is to be expected from straight pipes (without connections and formed pieces) when typical operating conditions for district heating networks of a variable 90/65 * C prevail. Only tangential stress from the internal pressure is considered for a given temperature collective. Other loads such as bending stresses and prevented heat expansion are subject to relaxation whose influence is not yet sufficiently well-known for district heating pipelines.

The main difficulty lay in the fact that there is little information available on the long-term behaviour of $\mathrm{PE}-\mathrm{X}$ and PB which can be collected together in order to achieve a comparison with plausible assumptions. The creep curves of the relevant DIN standards do not include the steep decline which is characteristic of plastics as a result of ageing.

Although other investigations include these phenomena, the published creep curves are average value curves and not minimum value curves as required for dimensioning district heating pipelines.

The concept here envisaged first investigating only the effects of thermal loads on ageing. For this the creep curves from internal pressure tests were evaluated and from them lifetime curves formed. From the proportion of damage of the assumed temperature distribution the expected lifetime was determined according to an accumulation of damage hypothesis (Miner's Law).

In a second consideration, the lifetime which could be forecast from the simultaneous mechanical and thermal loads was determined. For this, the extrapolated creep curves of the DIN standards were used, which do not include the steep decline which is to be expected as a result of ageing. This procedure is admissible since the question of ageing was dealt with in the first stage and here only a control on how long the lifetime could be, without considering ageing, was undertaken.
6.2 Basic Information

The work was based on the present state-of-the-art and knowledge. DIN-standards were explicitly taken into consideration. Creep curves for the materials $\mathrm{PE}-\mathrm{X}$ and PB are given in DIN 16892 and DIN 16968 and these do not have the steep decrease which is to be expected as a result of ageing.

Although it states quite clearly in DIN 16892 that sufficiently cross-linked polyethylene, as opposed to other known poly olefines, does not have a bend in the creep curve, experts such as the authors of [8] expect a steep decrease in the creep curves both for PB as well as for $\mathrm{PE}-\mathrm{X}$.

In Sweden, numerous inner pressure creep tests were carried out on pipes of PE-X and PB [8] and [9]. For both materials the expected sharp decrease was found as a result of ageing. The Swedish publications have two disadvantages for the application here:

- they are not comparative investigations between PE-X and PB but two separate activities
- no minimum values were given, only average values.

In spite of these limitations, the Swedish work is certainly the most comprehensive of all modern investigations of this subject and, for this reason, the lifetime curves were based on these results.
6.3

Assumed Loads

A temperature distribution according to Table 6.1 was assumed.

Supply Temperature ['C]	Hours per Year [h/a]
65	7110
$66-70$	800
$71-75$	500
$76-80$	250
$81-90$	100

Table 6-1: Assumed Temperature Distribution

Figure 6-1 presents this assumed temperature distribution as a block diagram.

The maximum operating pressure assumed was

$$
\mathrm{p}=5 \text { bar }=0.5 \mathrm{~N} / \mathrm{mm}^{2} .
$$

For typical wall thicknesses of district heating pipelines of $\mathrm{PE}-\mathrm{X}$ and PB for the different nominal diameters one obtains from Figure 6-2 and

$$
\sigma_{\mathrm{t}(\mathrm{p})}=\sigma_{\mathrm{yp}}=\mathrm{p} \cdot \mathrm{~d}_{1} /(2 \cdot s)
$$

the tangential stress according to Table 6-2

Figure 6-1: Assumed Temperature Distribution

Vorlauftemperatur

Angen.Temp.Verteil.

DN $[-]$	d_{a} $[\mathrm{mmn}]$	s $[\mathrm{mm}]$	d_{1} $[\mathrm{~mm}]$	$\sigma_{\varepsilon(\mathrm{p})}$ $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$
20	25	2.3	20.4	2.22
25	32	3.0	26.0	2.17
32	40	3.7	32.6	2.20
40	50	4.6	40.8	2.22
50	63	5.8	51.4	2.22
65	75	6.9	61.2	2.22
80	90	8.2	73.6	2.24

Table 6-2 Resulting Tangential Stress for an Internal Pressure of 5 bar

Other loads such as bending stresses and prevented heat expansion have not been considered in this work as these are subject to relaxation whose influence is not yet sufficiently well-known for district heating pipelines.

6.4 Thermal Loads (Ageing)

All plastics are subject to ageing when put under stress for a long time, particularly as a result of higher temperature and oxygen, because their thermal stability is limited. Should such materials be used at temperatures much higher than $20^{\circ} \mathrm{C}$, then information on the time of the beginning of the ageing process is essential. It must be tested whether a sharp decline in the creep curve can be determined or not by means of extrapolation for the temperature being considered here within the required minimum period of operation.

In the case of all plastics, ageing leads to a reduction in the molar mass, breaking stress, creep strength and then to brittleness and finally to cracking, which presents a risk for a reliable operation.

The life time curves for PEX and PB were determined in a statistically reliable calculation procedure based on [8]. They are presented in Fig. $6-2$ as lines c and e.

Fig. 6-2: Various Lifetime Curves for $\mathrm{PE}-\mathrm{X}$ and PB
a) PE-X P1, average value (from [9])
b) PB , average value
c) PB, least value
d) PB , average value (from [6])
e) PE-X P3, least value
£) PE-X P3, average value (from [9], however, parallel to a)
g) PB, least value
h) PB, average value

For the assumed temperature range, they lead to creep times of
$T_{x, P E-x}=1.3 \cdot 10^{6} \mathrm{~h}=148$ a \quad for VPE (PEX) and
$T_{\mathrm{X}, \mathrm{PB}}=4.84 \cdot 10^{5} \mathrm{~h}=55 \mathrm{a}$ for PB

Thus, there is sufficient reliability regarding ageing.
6.5 Mechanical and Thermal Loads (Static)

For stressed periods which occur before ageing starts, there is also a certain stress dependability of the service life. As already mentioned in section 5, the prescribed operational pressure of 5 bar leads to a tangential stress in the pipe of about $2.22 \mathrm{~N} / \mathrm{mm}^{2}$. With a safety factor of 1.8 , one obtains a stress of $4 \mathrm{~N} / \mathrm{mm}^{2}$.

In the following section the service life which can be expected for changing temperatures and constant pressures will be determined. For this the creep curves are extrapolated beyond the start of ageing. This procedure is acceptable as ageing has already been considered in the last section.

Result:

Both for PEX as well as for PB there are service lifetimes which are far beyond the start of ageing.
6.6 Load Limits

For operational pressures of up to 5 bar and a safety factor of 1.8 , the mechanical load from internal pressure has no influence on the lifetime. Considering ageing of the two materials investigated, the start of ageing is far beyond the technical period of utilization.

Creep curves, such as those based on DIN standards 16892 and 16968 , which do not include the steep decline, are not suitable for estimating the expected service life. In Sweden, valuable results from internal pressure creep tests are available and these can be used to determine the lifetimes [6] and [9]. For system designs, however, the measured average values should not be used, but minimum curves have to be construted presenting the decisive lifetime curves.

In summarizing it must also be pointed out that considerably higher stresses than the assumed comparative stress of $4 \mathrm{~N} / \mathrm{man}^{2}$ (i.e. operating pressure 5 bar and safety factor $s=1.8$) cannot be borne in the case of a variable mode of operation up to $90^{\circ} \mathrm{C}$.
[1] IEA - District Heating Project
Report: Technical and Economic Assessment of New
Distribution Technology
Statens energiverk, Stockholm 1987:R6
[2] Heitz, E.
DECHEMA-Institut, Frankfurt/M.
Personal communication
[3] Amby, L.
Diffusionsverhaltnisse in vorgedammten FernwarmeKunststoffrohren
Dansk Teknologisk Institut, 1992
(4] Ul1mann
Encyclopádie der technischen Chemie
Verlag Chemie 1980
4. Auflage, Band 19, pp. 176
[5] Fleig, W.
Vernetztes Polyethylen (VPE) - ein neuer Werkstoff für die Gasverteilung?
Gas . Erdgas GWF Vol. 131 (1990) No. 10/11, p. 477
[6] Ifwarson, M and Tränker, T.
Temperature Limit for Polybutylene Hot-Water Pipes Kunststoffe - German Plastics 1989, No. 9
[7] Amby, L.
Personal communication
Dansk Teknologisk Institut Aarhus, 1992
[8] Kempe, B. and Hessel, J.
Verfahren zur Ermittlung der Zeitstandfestigkeit von
Rohren aus thermoplastischen Kunststoff
Schweißen und Schneiden (1990) H. 4
[9] Ifwarson, M. and Eriksson, P.
Experience from 12 Years Evaluation of Cross-Linked polyethylene
Plastic pipes VI, The plastic and Rubber Institute, 1985
[10] IEA-District Heating Project
Annex III
Advanced Fluids
(will be edited in late 1992)
[11] Proceedings of the International Symposium on Fluids for District Heating
10 - 11 th April 1991, Copenhagen Denmark
Bjurström, H. und Oddving, B.
Testing a Drag Reducing Additive in a Plastic System

IEA District Heating

DISTRICT HEATING PIPING WITH PLASTIC MEDIUM PIPES STATUS OF THE DEVELOPMENT AND LAYING COSTS

Putilthectity
Neiherlonds Agency lor Energy and the Environment

Streat oddrent Swentiboichtradi 21 Sflard
Tetephone: +31 40 598205
Tolofor 491.46528250

1992:P3
ISBN 90-72130-29-4

